Fabrication program

Safety

Full lift safety valve with spring loading. (AIT)

Mod. 496

Connection: Flange x Flange DN₁ x DN₂: 20x32 to 100x150 Material: Cast iron. PN-16

Nodular iron. PN-40. 350°C Cast steel. PN-40 Stainless steel. PN-40

Seal: Metal

Mod. 495

Connection: Female thread x Female thread R₁ x R₂: 3/4"x1 1/4" and 1"x1 1/2"

Material: 3/4"x1 1/4" and 1"x

Material: Cast iron. PN-16

Nodular iron. PN-40. 350°C Cast steel. PN-40 Stainless steel. PN-40

Seal: Metal

Normal safety valve with spring loading. (AN)

Mod. 595

Connection: Male thread x Free discharge R1 x 6ØB: 3/8"x6ØB to 1"x6ØB Material: Brass. PMS. 36 bar

Seal: Brass. PMS. 36 bar Stainless steel. PN-40 Seal: PTFE (Teflón)

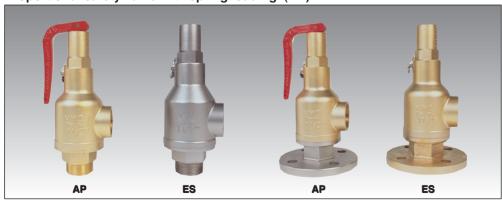
Fluorelastomer (Vitón)

Mod. 695

Connection: Male thread x Female thread R1 x R2: 3/8"x1/2" and 1/2"x1/2"

Material: Brass. PMS. 36 bar

Seal: PTFE (Teflón)


Fluorelastomer (Vitón)

Mod. 295

Connection: Male thread x Female thread R1 x R2: 1/2"x1" and 3/4"x1 1/4"
Material: Bronze. PMS. 25 bar
Seal: PTFE (Teflón)
Silicone's rubber

Silicone's rubber Fluorelastomer (Vitón)

Proportional safety valve with spring loading. (AP)

Mod. 095

Seal:

 $Connection: Male\ thread\ x\ Female\ thread$

R₁ x R₂: 1/4"x1/4" to 4"x4" Material: Bronze/Brass. PN-16

Mixed (Bronze/Brass- Stainless steel). PN-25

Stainless steel. PN-25 PTFE (Teflón)

Silicone's rubber Fluorelastomer (Vitón) Mod. 096

Seal:

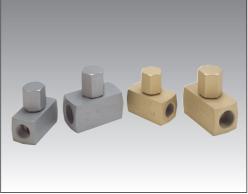
Connection: Flange x Female thread DN₁ x R₂: 8x1/4" to 100x4" Material: Bronze/Brass, PN-16

Mixed(Bronze/Brass- Stainless steel). PN-25

Stainless steel. PN-25 PTFE (Teflón) Silicone's rubber Fluorelastomer (Vitón)

Vacuum breaker safety valve

Mod. 795


Connection: Male thread x Free intake R x 6ØB: 3/8"x6ØB to 1"x6ØB
Material: Stainless steel. PN-16
Brass. PN-16
Seal: Silicone's rubber

Fluorelastomer (Vitón)

Disc check valve

Piston check valve

Mod. 170

Connection: For placing between flanges DN: 15 to 100

Bronze. PN-16 Material: Carbon steel. PN-40

Stainless steel. PN-40 Metal

Seal:

Mod. 172

Seal:

Connection: For placing between flanges DN: 125 to 200

Material: Bronze. PN-16 Cast steel. PN-40

Stainless steel. PN-40

Metal

Mod. 179

Connection: Female thread GAS

Female thread NPT Socket welding ends SW

1/4" to 2" R:

Material: Brass. PN-200

Carbon steel. PN-250 Stainless steel. PN-250

Seal: Metal

Steam traps

Thermodynamic steam trap without strainer

Thermodynamic steam trap with strainer

Mod. 041

Connection: Female thread GAS

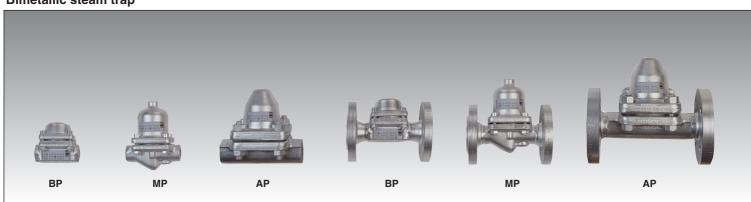
Female thread NPT Socket welding ends SW

1/2" to 1"

Material: Stainless steel. PMA. 63 bar

Seal: Metal Mod. 043

Connection: Female thread GAS


Female thread NPT Socket welding ends SW

1/2" to 1"

Material: Stainless steel. PMA. 63 bar

Seal: Metal

Bimetallic steam trap

Mod. 143

Connection: Female thread BP 1/2" and 3/4"

MP 1/2" and 3/4" AP 1/2" to 1"

Carbon steel. BP. PN-40 Material: Carbon steel. MP. PN-40

Carbon steel. AP. PN-100 Metal Seal:

Mod. 144

Connection: Flange BP 15 to 25 DN: MP 15 to 25

AP 15 and 25

Material: Carbon steel. BP. PN-40 Carbon steel. MP. PN-40

Carbon steel. AP. PN-100

Metal Seal:

Reducing **Mixing**

Direct action pressure reducing valve

Mod. 513

Connection: Female thread 1/2" to 1"

Material: Nodular iron. PN-25 Cast steel. PN-40 Stainless steel. PN-40

Seal: Metal

Mod. 514

Connection: Flange DN: 15 to 25

Material: Nodular iron. PN-25 Cast steel. PN-40

Stainless steel. PN-40

Seal: Metal

Steam-water mixing valve

Mod. 253

Connection: Female thread 1/2", 3/4", 1" and 1 1/2" Bronze. PN-16 Material: Seal: PTFE (Teflón)

Watergun. PI-1

Connection: Female thread

1/2" R:

Material: Bronze (Covered with synthetic Rubber)

Fluorelastomer (Vitón) Seal:

Float - Buoys

Float valve

Mod. 151

Connection: Male thread 3/8" to 2 1/2" R: Stainless steel. PN-16 Material: Seal Silicone's rubber

Buoys

Mod. 152

Material: Flat: Ø150x60. Ø150x60. Ø200x80 and Ø250x95.

Stainless steel

Female thread. M10 Sliding(Ø8 mm. internal) Ø105. Female threads. M10 Ø300x115 and Ø350x130.Female threads. M12

Ø60. Female thread. M4 Ø90. Female thread. M10 Sliding (Ø18 mm. internal)

Spherical:

Ø60.

Ø110 and Ø150. Female threads. M10 Ø200 and Ø300. Female threads. M12

Dovel Ø 4,5 mm.

Cylindrical:

Ø60x120.

Ø40x50. Male thread. M4 Ø40x50. Sliding (Ø4 mm. internal) Ø60x120

Female thread. M6. (With or without Epoxi coating) Sliding (Ø6 mm. internal). (With or without Epoxi coating)

Instrumentation

Siphon tube For pressure gauges

Mod. 011

Connection: Male thread 1/4" to 1/2" R: Carbon steel. PN-32 Material: Stainless steel. PN-40

Sleeve and nuts

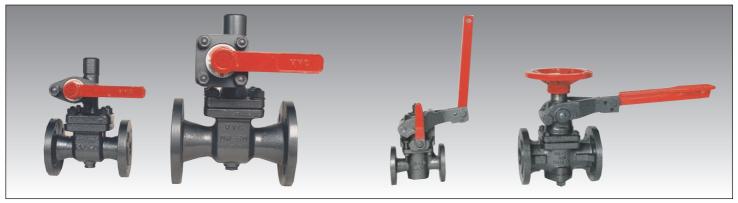
Connection: Female thread 1/4" to 1/2" R: Material: Brass Stainless steel

Needle valve

Mod. 147

R:

Connection: Female thread GAS Female thread NPT


Socket welding ends SW

1/4" to 2" Brass. PN-200 Material:

Carbon steel. PN-250 Stainless steel. PN-250

Seal: Metal

Blowdown valve for bleeding dirt and sludge

Mod. 460

Connection: Flange DN: 25 to 50 Cast steel. PN-40 Material:

Seal: Metal

Mod. 260

Connection: Flange DN: 20 to 50 Cast steel. PN-40 Material:

Seal: Metal

Blowdown valve for automatic bleeding dirt and sludge For steam boilers

Continuous desalting valve For steam boilers

Mod. 260-A

Connection: Flange DN: 20 to 50 Material: Cast steel. PN-40

Seal: Metal

Programmable control for automatic bleeding

of dirt and sludge. MP-1 Connection: Air inlet 1/8"

Control and discharge tube Ø6/4 mm. Voltage: 220 V.A.C. ± 10% 50/60 Hz.

Mod. 560 Connection: Flange DN: 20

Material: Cast steel. PN-40

Seal: Metal

Automatic continuous desalting valve

Samples water-cooled

Mod. 560-A

Connection: Flange DN: 20

Material: Cast steel. PN-40 Seal: Metal

Servomotor voltage: 220 V.A.C. \pm 10% 50/60 Hz.

Desalting controlle

With assembly cupboard. ARD-1 Without assembly cupboard. RD-1

220 V.A.C. ± 10% 50/60 Hz.

Conductivity electrode. EC-1

Connection: Male thread R: PTFE (Teflón) -Material:

Stainless steel. PMS. 32 bar

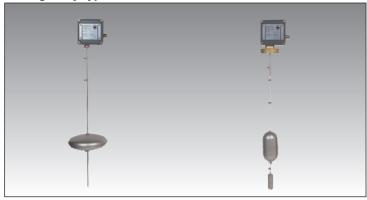
Electrode connection collector

Connection: Flange DN: 20

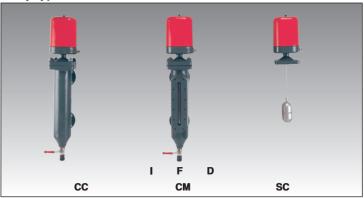
Material: Carbon steel. PN-40

Blowoff valve: Mod. 999 1/2" with simple joint plug

Mod. 560 DRM-1


Connection: Sampling circuit: Tube \emptyset 6/8 mm.

Refrigeration circuit: Female thread 1/2"


Material: Stainless steel.

Sampling circuit. PMS. 140 bar Refrigeration circuit. PMS. 10 bar

Sliding buoy type automatic level controller

Buoy type automatic level controller

Mod. 290 Bracket with 2 screws M.8 x ... Connection:

Material: Stainless steel Standard level fluctuation: 495 mm. Ø150x60 sliding

Maximum n°. of switches:

Mod. 291 Female thread 2 1/2" Connection: R:

Material Stainless steel - Brass. PMS. 19 bar

Standard level fluctuation: 3.000 mm. Maximum level fluctuation: 30.000 mm Ø60x120 sliding

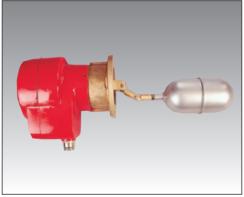
Maximum n°. of switches:

Mod. 076 Connection:

Flange DN:

Flange with 4 screws M.16x40 Cast iron. PN-16 Stainless steel. PN-16. (SC) Connection (SC): Material:

Maximum level fluctuation: Buoy: Maximum n°. of switches: Ø60x120 Distance between centres of flanges 190 or 250 mm, Viewer (CM):

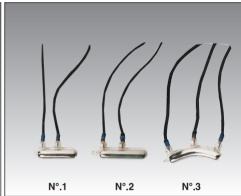

F = Front D = Right

Blowoff valve: Mod. 999 1/2" with simple joint plug

Magnetic switch

Buoy type automatic level controller

Mod. 240


Connection: Material:

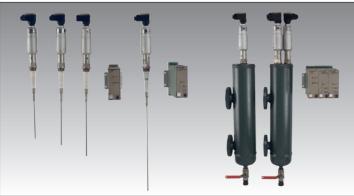
Maximum level fluctuation: 125 mm. Buoy: Maximum n°, of switches:

Lateral flange Ø110 mm. Bronze. PMS.25 bar. 220°C Stainless steel. PN-25

Ø60x120 3

Mercury switch

Mod. 248


No. 2 Type R: 2 contacts. 6A.
N°. 2 Type R: 2 contacts. 10A.
N°. 3 Type I: 3 contacts. 10A. To be meant for Mod. 240


Electrode based electronic level controller

Connection: M.4
Voltage: 220 V.A.C.
To be meant for Mod. 290, 291 and 076

Mod. 262

Mod. 176 Level controller. RN-1 Minimum level safety controller. RS-1

220 V.A.C. ± 10% 50/60 Hz. Voltage:

Level electrode. EN-1 Minimum level safety electrode. ES-1

Connection: Male thread

PTFE (Teflón)- Stainless steel. PMS. 32 bar Material:

Measuring standard length: 700 mm.

Electrode connection collector

Connection: DN: Flange

Material: Carbon steel. PN-40 Maximum n°, of electrodes: 1 or 3

Distance between centres of flanges: 190 or 250 mm.
Blowoff valve:

Mod. 999 1/2" with simple joint plug

Material:

Mod. 276 Modulating level controller. RAC-1 Voltage:

Modulating level electrode. EAC-1

Male thread

Material

PTFE (Teflón) - Stainless steel. PMS, 32 bar 300 to 1.500 mm.

220 V.A.C. ± 10% 50/60 Hz.

Measuring standard length:

Electrode connection collector

Connection: DN: Flange

Carbon steel. PN-40

Maximum n°, of electrodes: 1 or 3

Distance between centres of flanges: 190 or 250 mm.

Blowoff valve: Mod. 999 1/2" with simple joint plug

Round-dowel level indicator

Square-dowel level indicator

Level gauges Mod. 666

Flange 20 and 25 Connection: DN: Cast iron. PN-16 Material:

Nodular iron, PN-40, 350°C Cast steel. PN-40 Stainless steel. PN-40

Seal: Metal

Blowoff valve: Mod. 999 3/8" with simple joint

plug and/or sleeve

Level indicator box Mod. 166-ER

Round-dowel Ø 20 mm. Connection:

Box no.: O to X

Carbon steel. PN-16. PN-40 Material

Stainless steel. PN-40

Level gauges Mod. 466

Flange 20 and 25 Connection: DN: Cast iron. PN-16 Material:

Nodular iron, PN-40, 350°C Cast steel. PN-40 Stainless steel. PN-40

Seal: Metal

Level indicator box

Mod. 166-EC


Connection: Square-dowel Ø 18 mm.

Box n°.: O to X

Carbon steel. PN-16. PN-40 Material: Stainless steel. PN-40

Blowoff valve: Mod. 999 3/8" with simple joint plug

Reflection and transparency glasses. For level indicator box

Mica Shield For level indicators

Mod. 066 - PM

I to X Type: B/H I to X

Material: Natural muscovite

Blowoff valve

Type: Reflection: A 5 prisms 0 to IX

B 5 prisms 0 to IX H 5 prisms 0 to IX

Transparency: A V to IX B V to IX

H V to IX Material: Boron-Silicate

Joints: Red Klingerit cardboard type Oilit Klingerit cardboard type

PTFE (Teflón)

Mod. 999

Connection: Female thread 3/8" and 1/2" Material: Brass. PN-25 Seal: PTFE (Teflón) - Metal

Connection: Male thread x Female thread

3/8" and 1/2"

Material: Stainless steel. PMS.56 bar

Seal: PTFE (Teflón) - Metal

(+34 93 735 75 00

Simple joint plug

Connection: Male thread x Tube Ø 12/10

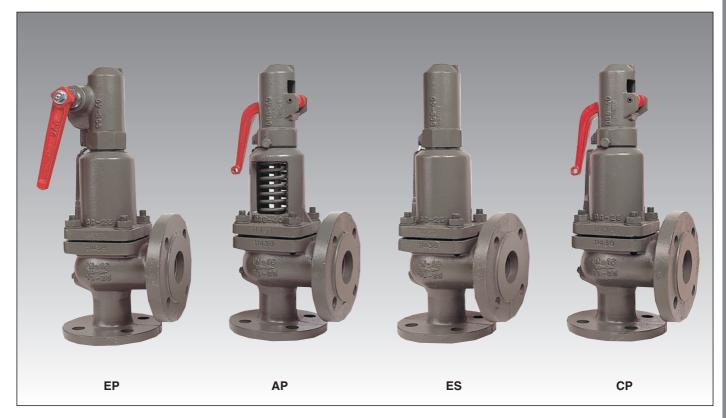
and Ø 15/13 mm. Material: 3/8" and 1/2" Carbon steel

Stainless steel Sleeve

Connection:

R: Male thread Material: 3/8" and 1/2"

Informative brochure, without obligation and subject to our General Sales Conditions.



Mod. 066

Full lift safety valve with spring loading. (AIT) Model 496

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open instantly and totally.

Design in line with the "AD-MERKBLATT A2 Specifications sheet" and "Technical safety instructions for TRD-421 steam boilers".

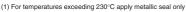
In accordance with UNE 9-100-86 "Safety valves" (Steam boilers).

Component test stamp: TÜV Rheinland (German technical supervision authority).

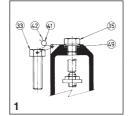
Licence N.°:

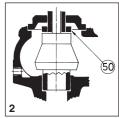
Specifications

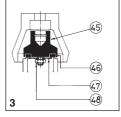
- -90° angular flow.
- Activated by direct action helicoid spring.
- Simplicity of construction ensuring minimum maintenance.
- Materials carefully selected for their resistance to corrosion. With the exception of washers and couplings, the valves are free of non-ferric materials.
- Internal body designed to offer favourable flow profile.
- Sealing surfaces treated and balanced, making them extremely tightness, even exceeding DIN-3230 requeriments. Page 3.
- Great discharge capacity. For liquids typically used with openings similar to proportional safety valves-
- Equipped with draining screws for removing condensation.
- Auto-centering plug
- Threaded shaft with lever positioner facilitating immediate manual action.
- Elevator, independent of the seal, designed facilitate sudden opening when the steam expands and, with any fluid, guarantees absolute opening and closing precision.
- All the valves are supplied sealed at the set pressure requested, simulating operational conditions, and are vigorously tested.
- All components are numbered, registered and checked. If requested in advance, material, casting, test and efficiency certificates will be enclosed with the valve.

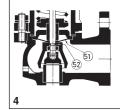

IMPORTANT

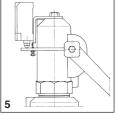
Depending on demand:

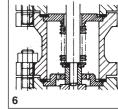

- 1.- Blocking screw which facilitates hydrostatic testing of the container which to be
- 2.- Rapid limiter to reduce the coefficient of discharge.
- 3.- Fluorelastomer (Vitón) seals, Silicone's rubber, PTFE (Teflón)... etc., achieving leakage levels less than 0.3 x 10⁻³ Pa cm³ seg.

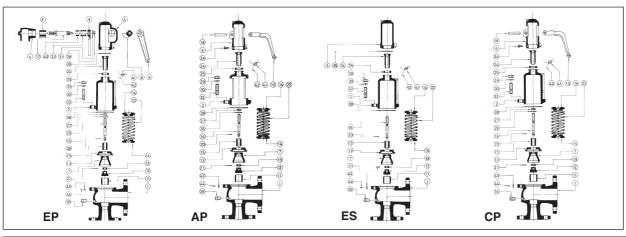

The ranges of application allow certain flexibility although we recommend limiting them to:


	F	ANGE OF	APPLICAT	ION FOR	THE SEAL	S		
FLUID					SET PRESS	SURE IN bar		
FLUID		0,2	1,8	4,0	4,8		7,0	30,0 40,0
Saturated steam		S	V			T		
Liquids and gases			S		١	/		Т
					TEMPERA*	TURE IN °C		
SEALS			ACCORDIN	G TO MANUFA	CTURERS		RECOMMEN	IDED BY VYC
		MINII	MUM	MAX	XIMUM	MIN	IIMUM	MAXIMUM
Silicone's rubber	S	-6	0	+2	.00	-5	50	+115
Fluorelastomer (Vitón)	V	-4	.0	+2	50	-3	30	+150
PTFE (Teflón)	Т	-26	5	+2	:60	-8	30	+230 (1)




- 4.- Flourelastomer (Vitón) membrane and O-ring isolating the rotating or sliding parts from the working fluid.
 5.- Electrical contact indicating open/closed.
- 6.- Balance bellows to:
 - Protect the spring from atmospheric influences.
 - Ensure outside of valve body is totally tightness.
 - Level out external or self-generated back pressure.
- 7.- Possibility of manufacture in other types of material, for special operating conditions (high temperatures, fluids, etc.).
- Totally free of oil and grease, to work with oxygen, avoiding possible fire risks (UV-Oxygen-VBG 62).
- 9.- Special springs for critical temperatures.





N°.										MA	TERI	AL								
PIECE	PIECE		CAST	IRON			NOD	ULAR	IRON			CA	ST ST	EEL			STAINLE	SS STEEL		
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 48 33 34 35 36 38 39 49 40 41 42 43 44 45 46 47 50 51 52	Body Closed bell Open bell Hood Elevator Cam Lever Seating Plug Lead Spring press Separator Rod Lever shaft Gudgeon Ring Safety ring Spring Gland Hollow screw Hollow screw nut Buffer nut Rod heck nut Nut Washer Stud Screw Cap Coupling Coupling Sealing wire Characteristic plate Rivets Plug Sealing disk Washer Limiter Membrane O-ring	Cast iron (Cast iron (Cast iron (Cast iron (Nodular iri Nodular iri Nodular iri Nodular iri Nodular iri Stainless s Stainless s Stainless s Stainless s Carbon ste Carbon st	re eel (DIN-1.114 steel (DIN-1.4 ón)	G-25) G-25) G-25) G-26G-40) G-26G-40) G-26G-40) G-26G-40) G-26G-40) G-28G-40) G-28G-40	(1) 20) 20) 20) 20) 20) 20) 20) 20) 20) 30) 30) 30) 16)	Nodular Nodular Nodular Nodular Nodular Nodular Nodular Nodular Stainles Carbon Carbon Carbon Carbon Carbon Stainles Stainles PTFE (I Silicone Stainles	iron (DIN-S s steel (DIN-S stee	0.7040 GC 0.7040 GC 0.7040 GC 0.7040 GC 0.7040 GC 0.7040 GC 0.7040 GC 1.7040 GC 1.7040 GC 1.7040 GC 1.1191 CC 1.1191 CC	3G-40) 3G-40) 3G-40) 3G-40) 13G-40) 13G-40) 13G-40) 13G-40) (AISI-420) (AISI-420) (AISI-420) (AISI-420) (AISI-420) (AISI-420) (AISI-420) (AISI-420) (AISI-302) (AISI-303)		Nodu Cast Nodu Nodu Nodu Nodu Nodu Nodu Nodu Stainin Stainin Stainin Stainin Carbot Stainin Carbot Stainin Carbot Stainin Carbot Stainin Carbot Stainin Carbot Carbot Carbot Carbot Carbot Carbot Stainin Stainin Carbot Stainin Stain	on steel (DIN- less steel (DII) less steel (DII) less steel (DII) less steel (DII) less steel (DIII) on steel (DIN- on steel (DIII) less steel (DIII)	7.7040 (6 19.91) 7.7040 (6 19.91) 7.7040 (6 19.91) 7.7040 (7 19.91) 7.7040 (8 19.91) 7.7040	GG-40) GG	trV4) (2)	Stainless sie St	(DIN-1, 440)	542) (ÁISI-636) 542) (AISI-636) 1) (AISI-316) 1) (AISI-303) 1) (AISI-316) 1) (AISI-316) 1) (AISI-316) 1) (AISI-316) 1) (AISI-316) 1) (AISI-316)	CF8M) CF8M) CF8M) CF8M) CF8M)	
<u> </u>	DN ₁ x DN ₂ PN		1	6				40		20 x 32	2 to	100 x 150	40			40				
	DDECCUDE IN her	16	13	13	13	40	35	32	28	24	40	35 32	28	24 21	20	40	34	32	29	
OPERATIN	MAX. TEMP. IN °C	120	200	250	300	120	200	250	300	350	120		_	350 400	_	120	200	300	400	
CONDITION		120	-1		1 000	120		-10	1 000	550	120	1200 200	-10	1000 400	1 700	120		60	700	
(1) DN-20 v 3	22 in stainless steel (DIN	1 ///00) //		-				-10		//) Oi-			0.00405.0	\ f =i	ro corina Ø -			05000	

Full lift safety valve with spring loading (AIT) model 496 - AP and CP.

1. Disassembly and assembly.

- 1.1 Disassembly.
 - To replace the spring (22) or clean any of the internal components of the valve, proceed in the following manner:
 - A Withdraw the clip (18), using a punching tool, until the lever (10) comes free. B Loosen the screws (34) and take the cap (6) off.

 - C Holding the spindle (16) steady, loosen the hollow screw nut (25) and the holow screw (24) until you note a realasing of the spring (22).
 - D Mark on the spindle (16) the position of the spindle lock-nut (27) and the adjusting nut (26). Loosen them and remove them
 - E Unscrew the nuts (29) and remove them, together with the studs (32) and their washers (30).
 - F Lift the cover (3) or (2) and you will have access to all of the components.

- 1.2 Assembly.

 A Place the safety-ring (20) on the spindle (16) and press it against the gasket (12).

 B In the spindle channel (16) connect the ring (19) and fix it to the security-ring (21). IIntroduce the
 - C Enter the guide (13), the separator (15), the spring-press (14), the spring (22), the spring-press (14) through the upper part of the spindle (16) and press this against the previously descrobed pieces.
 - D Replace the assembly (38) and the cover (3) or (2).
 - E Place the washers (30) on the studs (32) and make up the nuts (29) diagonally, checking the correct alignment of the cover (3) or (2).
 - F Adjust the firing pressure with the hollow screw (24) and fix the adjustment position with the hollow screw nut (25)
 - G Turn the spindle lock-nut (27) and the adjusting nut (26) to the position mrked (see 1.1.D) and make up against each other.
 - H Introduce the cap (6) and tighten the screws (34).
 - I Place the lever (10) and fix it with the fastener (18).

2. Adjusting the firing pressure.

- A Proceed according to points 1.1.A, 1.1.B, 1.1.C. B Proceed according to points 1.2.F, 1.2.H, 1.2.I.

Full lift safety valve with spring loading (AIT) model 496 - EP.

1. Disassembly and assembly .

- 1.1 Disassembly
- To replace the spring (22), or clean any of the internal components of the valve, proceed in the following manner:
 - A Move the lever (9) in direction C as far as the constructive catcher. B Unscrew the cap (4) and remove.

 - C Holding the spindle (16) steady, loosen the hollow screw nut (25) and the hollow screw (24) until you note a realeasing of the spring (22).
 - D Mark on the spindle (16) the position of the spindle lock-nut (27) and the adjusting nut (26). Loosen them and remove them.
 - E Unscrew the nuts (29) and remove them, together with the studs (32) and their washers (30).
 - F Lift the cover (2) and you will have access to all of the components.

- 1.2 Assembly.

 A Place the safety-ring (20) on the spindle (16) and press it against the gasket (12).

 B In the spindle channel (16) connect the ring (19) and fix it to the security-ring (21). Introduce the elevator (7) into the upper part of the spindle (16) and press this against the previously described
 - C Enter the guide (13), the separator (15), the spring-press (14), the spring (22), the spring-press (14) through the upper part of the spindle (16) in a correlative manner.
 - D Replace the assembly (38) and the cover (2).
 - E Place the washers (30) on the studs (32) and make up the nuts (29) diagonally, checking the correct alignment of the cover (2).
 - F Adjust the firing pressure with the hollow screw (24) and fix the adjustment position with the hollow screw nut (25)
 - G Turn the spindle lock-nut (27) and the adjusting nut (26) to the position marked (see 1.1.D) and make up against each other.
 - H Change the coupling (39) and lightly tighten the cap (4). Move the lever (9) towards position A as far as the constructive catcher. Definitively tighten the cap (4).

2. Adjustig the firing pressure.

- A Proceed according to points 1.1.A, 1.1.B, 1.1.C.
- B Proceed according to points 1.2.F, 1.2.H.

Full lift safety valve with spring loading (AIT) model 496 - ES.

1. Disassembly and assembly.

1.1 Disassembly.

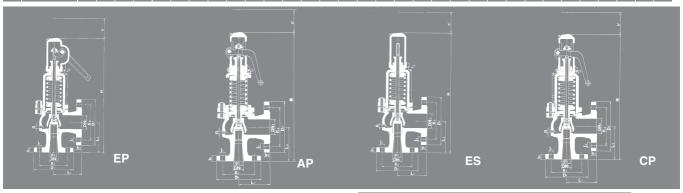
To replace the spring (22), or clean any of the internal components of the valve, proceded in the following manner:

- A Unscrew the cap (5) and remove.
- B Holding the spindle (16) steady, loosen the hollow screw nut (25) and the hollow screw (24) until you note a realeasing of the spring (22).
- C Unscrew the nuts (29) and remove them, together with the studs (32) and their washers (30).
- F Lift the cover (2) and you will have access to all of the components.

- 1.2 Assembly.

 A Place the safety-ring (20) on the spindle (16) and press it against the gasket (12).

 B In the spindle channel (16) connect the ring (19) and fix it to the security-ring (21).


 Introduce the elevator (7) into the upper part of the spindle (16) and press this against the previously described pieces.
 - C Enter the guide (13), the separator (15), the spring-press (14), the spring (22), the spring-press (14) through the upper part of the spindle (16) in a correlative manner.

 - D Replace the washers (38) and the cover (2).
 E Place the washers (30) on the studs (32) and make up the nuts (29) diagonally, checking the correct alignment of the cover (2).
 - F Adjust the firing pressure with the hollow screw (24) and fix the adjustment position with the hollow screw nut (25)
 - G Change the coupling (39) and tighten the cap (5).

2. Adjusting the firing pressure.

- A Proceed according to points 1.1.A, 1.1.B. B Proceed according to points 1.2.F, 1.2.G.

	DN ₁	k DN ₂	20) x 3	2		1	25 x	40			32	x 50			40 >	65			50 x	80			65 ×	100		8	0 x 1	125			100 :	x 150	0	
		lo		16				20)			2	25			3	2			40				5	50			63				7	7		
A	4o = ·	π . do² 4		201				31	4			4	91			80)4			125	7			19	64			311	7			46	57		l
	ŀ	1		350				39	5			4	15			50	00			555	5			6	60			710)			8	10		
	h	11		112				12	9			1	29			14	8			148	3			1	91			191	1			1	91		
	L	-1		85				95	5			1	00			11	5			125	5			1-	40			155	5			1	75		
	L	-2		95				10	5			1	10			13	80			145	5			1	50			170)			18	80		
	F	٦ .		1/4"				1/4					/4"			1/-	4"			1/4				3/	/8"			3/8				3/	8"		
			Wh	itwor	th g	as-tiç	ght cy	ylind	rical	fema	ale th	reac	ISC	228	3/1 1	978 ((DIN	-259)																
		D ₁		105				11!	5				40			15	0			165	5			1	85			200)			2	20		
	PN-10/16 DIN-2532/2533	K ₁		75				85				1	00			11	0			125	5			1.	45			160)			18	80		
ш		I ₁		14				14					18				8			18				1	8			18					8		
NGE		b ₁		16				16					18				8			20				2	20			22				2	24		
FLANGE		DRILLS N.º											4												4			8					B		
INTAKE	DIN-28607 DIN-2544/2545	D ₁		105				11!	5				40			15	0			165	5			1	85			200)			2	35		
Ę	-2860	K ₁		75				85					00			11	0			125	5			1.	45			160)				90		
		I ₁		14				14					18							18					8			18					22		
		b ₁		18				18					18			18(2				20					22			24					24		
	Ä	DRILLS N.º											4												8								8		
JE JE	/2533 15 72545	D ₂		140				15					65			18				200					20			250					85		
FLANGE	DIN-2532 DIN-2860 DIN-2544	K ₂		100				110					25			14				160					80			210					40		
		I ₂		18				18					18							18								18					22		. 8
ESCAPE	PN-10/16	b ₂		18				18					20			20(1	22(20))•* 				20)•*		2	6(22	2)•*				22)•*		.44
		DRILLS N.°		4				4					4							8					8 T			8					B 		<u>=</u>
	MOE		EP	AP	ES		EP	AP		СР		AP			EP					AP				AP	ES		EP				EP	AP			ste
FH. SS	,—	IRON	8,00	7,40	7,60	<u> </u>	9,60	8,88		9,38	-	12,82		-	20,27			-	<u> </u>								55,48					75,98			ess
WEIGHT IN Kgs.	NODU	OTEEL	8,73	8,07	8,29	8,49	10,47	9,68		10,20	-	13,99	14,37			-, -			29,11					,-	-,-	,-	60,54	,	57,51		89,64		85,15		tain
	STAIN	LESS STEEL	8,50	7,86	8,07	8,27	10,60	9,80			14,87	-			21,27								41,48				58,48		_	56,15	87,15		82,79		Spt
		AST IRON 102-496.	5346	53461	53462	53463	5106	51061	51062	51063	5146	51461	51462	51463	5126	51261	51262	51263	5206	52061	52062	52063	5226	52261	52262	52263	5306	53061	53062	53063	5406	54061	54062	54063	5N) ar -40).
JE		OULAR IRON 002-496.	8346	83461	83462	83463	8106	81061	81062	81063	8146	81461	81462	81463	8126	81261	81262	81263	8206	82061	82062	82063	8226	82261	82262	82263	8306	83061	83062	83063	8406	84061	84062	84063	S-C 2 (GGG
CODE		ST STEEL 02-496.	8344	83441	83442	83443	8104	81041	81042	81043	8144	81441	81442	81443	8124	81241	81242	81243	8204	82041	82042	82043	8224	82241	82242	82243	8304	83041	83042	83043	8404	84041	84042	84043	Cast steel (GS-C 25N) and Stainless steel (1.4408) Nodular iron (GGG-40).
		LESS STEEL 02-496.	8342	83421	83422	83423	8102	81021	81022	81023	8142	81421	81422	81423	8122	81221	81222	81223	8202	82021	82022	82023	8222	82221	82222	82223	8302	83021	83022	83023	8402	84021	84022	84023	* Cast s

	RECOMM	IENDED RANGES OF APP	LICATI	ON		
	MO	DEL	EP	AP ₍₁₎	ES	CP ₍₁₎
		SATURATED STEAM	*	*		*
FLU	JID	GASES	*		*	
		LIQUIDS	*		*	
	INTERNAL	SATURATED STEAM GASES		1	5	
BACK N % SURE	OR GENERATED	LIQUIDS		-	_	
PERMISSIBLE BACK PRESSURE IN% OF SET PRESSURE	EXTERNAL	SATURATED STEAM GASES			5	
AISSII ESSU ET PI	VARIABLE (1)	LIQUIDS		-	_	
PERN PRI OF S	EXTERNAL	SATURATED STEAM GASES		5	50	
	CONSTANT (1)(2)(3)	LIQUIDS		9	90	
	%	SATURATED STEAM GASES		1	0	
OVERPF	RESSURE	LIQUIDS		2	25	

OF	PEN AND CLOSED PI	RESSURES IN % OF SET	PRESSURE
FLUID	PRESSURE IN bar	OPENING PRESSURE	CLOSING PRESSURE
SATURATED STEAM	< 3	+ 5 %	- 0,3 bar
GASES	≥ 3	+ 5 %	- 10 %
LIQUIDS	< 3	+ 10 %	- 0,6 bar
LIQUIDS	≥ 3	+ 10 %	- 20 %

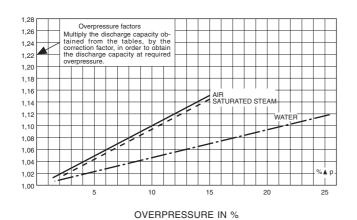
- (1) If external overpressure exists, the AP and CP model cannot
- (2) With external constant overpressure, the spring is adjusted deducting the overpressure from the set pressure.
- (3) If the set pressure < 3 bar we must consider the total atmospheric pressure (1 bar) as external constant overpressure being freely released.

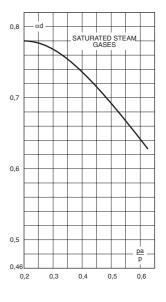
If pa > 0,25p, we must limit plug speed with the consequent reduction of the αd coefficient of discharge. With the new reduced coefficient we determine the d_0 , in order to remove the necessary volume.

- $\begin{array}{ll} pa = Overpressure\ permitted\ [bar]\ absolute.\\ p = Set\ pressure\ [bar]\ absolute.\\ \alpha d = Coefficient\ of\ discharge. \end{array}$

SET PRESSURES AND REGULATING RANGES

	DN ₁ x DI	N ₂	20 x 32	25 x 40	32 x 50	40 x 65	50 x 80	65 x 100	80 x 125	100 x 150
	MAXIMUM (LIQUIDS	PN-16	16	16	16	16	16	16	16	16
N bar	AND GASES)	PN-40	40	40	40	32	32	32	25	20
URESI	MAXIMUM (SATURATED	PN-16	13	13	13	13	13	13	13	13
ET PRESSURES IN bar	STEAM)	PN-40	32	32	30	24	22	24	20	18
SEI	MINIMUM	STEAM AND GASES	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
	Will thin Civi	LIQUIDS	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
	0,20 a 0,68	CODE	56210 56390	56226 56406	56242 56422	56258 56438	56273 56453	56288 56468	56303 56483	56317 56497
	0,66 a 1,00	CODE	56211 56391	56227 56407	56243 56423	56259 56439	56274 56454	56289 56469	56304 56484	56318
	0,95 a 1,40	CODE	56212 56392	56228 56408	56244 56424	56260 56440	56275 56455	56290 56470	56305 56485	56319
	1,30 a 1,90	CODE	56213 56393	56229 56409	56245 56425	56261 56441	56276 56456	56291 56471	56306 56486	56320
	1,80 a 2,60	CODE	56214 56394	56230 56410	56246 56426	56262 56442	56277 56457	56292 56472	56307	56321
IN bar	2,50 a 3,60	CODE	56215 56395	56231 56411	56247 56427	56263 56443	56278 56458	56293 56473	56308	56322
NGE	3,50 a 5,00	CODE	56216 56396	56232 56412	56248 56428	56264 56444	56279 56459	56294	56309	56323
ING RAI	4,80 a 6,30	CODE	56217 56397	56233 56413	56249 56429	56265 56445	56280 56460	56295	56310	56324
REGULATING RAN	6,00 a 8,00	CODE	56218 56398	56234 56414	56250 56430	56266 56446	56281 56461	56296	56311	56325
SPRING RE	7,50 a 10,00	CODE	56219 56399	56235 56415	56251 56431	56267 56447	56282 56462	56297	56312	56326
SP	9,50 a 12,50	CODE	56220 56400	56236 56416	56252 56432	56268 56448	56283	56298	56313	56327
	12,00 a 16,00	CODE	56221 56401	56237 56417	56253 56433	56269 56449	56284	56299	56314	56328
	15,00 a 20,00	CODE	56222 56402	56238 56418	56254 56434	56270	56285	56300	56315	56329
	18,00 a 25,00	CODE	56223 56403	56239 56419	56255 56435	56271	56286	56301	56316	
	23,00 a 32,00	CODE	56224 56404	56240 56420	56256 56436	56272	56287	56302		
	30,00 a 40,00	CODE	56225 56405	56241 56421	56257 56437					


Spring steel (DIN-1.0600 GRADE-B). Maximum temperature for EP, ES and CP models 250°C.


Vanadium-chrome steel (DIN-1.8159 50 CrV4).

Stainless steel (DIN-1.4300) (AISI-302).

	COEF	FICIE	NT OF	DISCH	HARGI					0,6		0,8 0,78	ad			\blacksquare
DN ₁ >	x DN ₂	20 x 32	25 x 40	32 x 50	40 x 65	50 x 80	65 x 100	80 x 125	100 x 150				SATURATE	D STEAM		
d	lo	16	20	25	32	40	50	63	77	0,5	QUIDS	0,7	GAS	is /		
ŀ		7,00	9,00	12,00	12,00	18,00	18,00	20,00	29,00	0,4						\pm
h	11	2,60	3,20	4,00	5,20	6,50	8,00	10,00	12,50	0,36		0,6				
h/o	do	0,44	0,45	0,48	0,38	0,45	0,36	0,32	0,38	0,3						
h¹/	/do ⁽¹⁾	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,2						
COEFFICIENT	SATURATED STEAM GASES					78						0,5				+
OF DISCHARGE	LIQUIDS				0,	60				0,1	i					h
αd	LIQUIDS WITH RAPID LIMITER (1)				0,	36				0	0,1 0,2 0,3 0,4	0,4	0,1),2	0,3	0,4

									DISC	CHAI	RGE	CAF	PACI	ΤΥ										
DN ₁ x DN ₂	2	20 x 3	2	2	25 x 4	0	3	32 x 5	0	4	10 x 6	5	5	50 x 8	0	6	5 x 10	00	8	0 x 12	25	10	00 x 1	50
do		16			20			25			32			40			50			63			77	
$Ao = \frac{\pi \cdot do^2}{4}$		201			314			491			804			1257			1964			3117			4657	
p [bar]	11 -	Air at	ated s : 0°C a er at 20	and 1,	013 b		[Nm³/t		or othe						an wate = V∟ <mark>≪</mark>			ply:		$V_L = L$ $Q_A = V$	Vater flo iquid flo Vater de P _A =998 iquid de	w. nsity at Kg/m³).	a 20°C	
SET PRESSURE IN bar	1	II	III	1	II	III	1	II	III	1	II	III		Ш	III		II	III	1	Ш	III		Ш	III
0,5	101	121	4310	157	200	6734	246	294	10530	402	482	17243		738	26958	982	1168	42120	1559	1845	66848	2330	2773	99876
1,0	151	182	6096	236	285	9523	369	435	14892	604	724	24385	945	1134	38125	1476	1771	59568	2343	2811	94538	3500	4200	141246
1,5	200	244	7466	312	380	11664	488	590	18239	799	960	29866	1249	1498	46693		2342	72955	3097	3716	115785	4628	5431	172990
2,0	246	300	8621	385	469	13468	602	728	21060	986	1191	34486	1541	1863	53916	2408	2913	84241	3821	4622	133697	5709	6907	199752
2,5	290	356	9639	453	569	15058	708	857	23546	1160	1415	38556	1813	2194	60280	2833	3429	94185	4496	5444	149478	6717	8134	223329
3,0	334	414	10559	522	648	16495	817	1017	25793	1337	1664	42236	2090	2605	66034	3266	4070	103174	5184	6376	163746	7745	9526	244645
3,5	375	466	11405	585	730	17817	916	1145	27860	1499	1872	45620	2343	2931	71325	3661	4579	111441	5811	7260	176865	8682	10820	264247
4,0	415	518	12192	648	811	19047	1014	1272	29784	1660	2080	48770	2596	3256	76249	4056	5088	119136	6437	8066	189077	9617	12023	282492
4,5	455	570	12932	711	892	20202	1112	1399	31590	1821	2288	51729	2847	3582	80874	4449	5596	126362	7060	8873	200547	10548	13225	299628
5,0	496	622	13632	774	973	21295	1210	1526	33299	1982	2496	54527	3099	3908	85249	4842	6105	133198	7684	9680	211394	11481	14427	315835
6,0	576	725	14933	899	1135	23328	1406	1780	36477	2303	2913	59731	3600	4559	93386	5625	7123	145911	8928	11293	231571	13339	16832	345980
7,0	656	829	16129	1024	1298	25197	1602	2035	39400	2623	3329	64517	4100	5210	100868	6406	8140	157602	10167	12907	250125	15190	19236	373701
8,0	736	933	17243	1149	1460	26936	1797	2289	42121	2942	3745	68972	4600	5862	107833	7187	9158	168483	11406	14520	267395	17041	21641	399504
9,0	815	1036	18288	1273	1622	28570	1991	2544	44676	3261	4161	73156	5098	6513	114374	7965	10176	178704	12641	16133	283615	18887	24045	423738
10,0	894	1140	19278	1397	1784	30116	2185	2798	47092	3578	4577	77113	5594	7164	120561	8740	11193	188370	13871	17747	298957	20724	26450	446659
12,0	1053	1347	21118	1645	2109	32990	2572	3307	51587	4212	5410	84473	6585	8467	132068	10289	13228	206349	16329	20974	327491	24396	31259	489290
14,0	1211	1555	22810	1891	2433	35634	2958	3816	55720	4843	6242	91241	7572	9770	142650	11830	15264	222883	18775	24201	353731	28052	36068	528494
16,0	1369	1762	24385	2139	2758	38094	3344	4324	59568	5476	7074	97541	8561	11073	152490	13376	17299	238272	21229	27427	378154	31718	40877	564984
18,0	1526	1969	25864	2384	3082	40405	3727	4833	63181	6103	7907	103458	9542	12375	161750	14909	19334	252725	23661	30654	401093	35352	45687	599256
20,0	1684	2177	27263	2631	3407	42590	4113	5342	66599	6736	8739	109054	10531	13678	170499	16454	21369	266396	26113	33881	422790		50496	631671
22,0	1841	2384	28594	2876	3731	44669	4497	5851	69850	7364	9571	114377	11514	14981	178821	17989	23404	279398		37108	443425			
24,0	2000	2592	29865	3124	4056	46656	4884	6360	72956	7998	10400	119463		16284	186772	19537	25440	291822		40334	463142			
26,0	2157	2799	31085	3370	4380	48561	5269	6868	75934		11236	124341		17586	194399		27475	303738		41948	482054			
28,0	2316	3006	32258	3618	4705	50394	5657	7377	78801		12068	129035		18889	201737		29510	315204						
30,0	2472	3214	33390	3861	5029	52163	6038	7886	81567		12900	133563		20192	208818		31545	326267						
32,0	2630	3421	34486	4109	5353	53873		8395	84242		13733	137944		21494	215665		33580	336967						
34,0		3628	35547		5678	55531		8904	86834															
36,0		3836	36578		6002	57141		9412	89352												A 0"			
38,0		4043	37580		6327	58707		9667	91800					Ce	ılculus	acco	rding	to "Al	J-Mer	Kblatt	A2".			
40,0		4250	38556		6651	60232		10430	94185															

	FAC	CT LIST FOR			Custome	er:				
		ETY VALVE	CALCU	LS	Theme:					
	Calcu	llus acording to AD-N	∕lerkblatt A	2 SR,"Safety valve" 1)	Leaf:			Of:		
1	Cons	ultation / Bid / Order								
2	Positi	on N°.								
3	N°. of	units								
4	Regu	lation								
5		Fluid								
6		Calculation tempe	rature	°C						
7		State at moment o	f dischar.	I = liquid, s = steam, g = gas	I□s	. □ g □	I□s	□ g □	I □ s	
8		Molecular mass		kg/kmol						
9	SZ	Adiabatic exponen	ıt æ	Compressibility coe. Z						
10	IOI	Density at momen	t of dischar	ge kg/m ³						
11	SERVICE CONDITIONS	Coefficients	Ψ max	χ						
12	CO	Viscosity	cSt	cPs						
13	CE	Working pressure	abs.	bar						
14	RVI	Set pressure abs.		bar						
15	SE	External back pres	sure abs.							
			constant	variable bar						
16		Rated pressure al	os.	bar		'		'		
17		Discharge	Required	I: kg/h, Nm³/h, l/h						
18		capacity	Possible	: 1) Kg/h, Nm ³ /h, I/h						
19		Opening: Full lift /	Normal / P	rogressive						
20		Manufacturer type								
21				Body						
22				Seat						
23	NO	Materials		Plug						
24	CTI			Spring						
25	-RU			Joint						
26	CONSTRUCTION	Manual discharge	action	yes / no						
27	CO	Cover		Closed / Open						
28	VALVE	Bellows		yes / no						
29	ΑA	Body with drainage	Э	yes / no						
30		Diameter of narrow	vest flow	do mm						
31		Section of narrowe	est	Necessary A ₀ mm ²						
32		flow Ao		Chosen A ₀ mm ²						
33		Allowed discharge	coefficient	αd						
34	SN			Flange mm						
35	TIO		DN	Thread inch						
36	EC	Input / Output		Welding (soldering) ends						
37	CONNECTIONS		PN	bar						
38	ŏ	Sha	ape of joint	surfaces (DIN-2526)						
39	¥	Unit weight		approx. Kg						
40	OBSERVA- TIONS									
41	DBSI									
42	O									
43	류핑	Certificate accordi		- 50049 2.2						
44	ACCEP- TANCE	Certificate accordi	ng to DIN	N - 50049 3.1.B						
45										
	Date:									
	Depart									
	Name:									

Informative brochure, without obligation and subject to our General Sales Conditions.

Full lift safety valve with spring loading. (AIT) Model 495

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open instantly and totally.

Design in line with the "AD-MERKBLATT A2 Specifications sheet" and "Technical safety instructions for TRD-421 steam boilers"

In accordance with UNE 9-100-86 "Safety valves" (Steam boilers).

Component test stamp: TÜV Rheinland (German technical supervision authority).

Licence N.°:

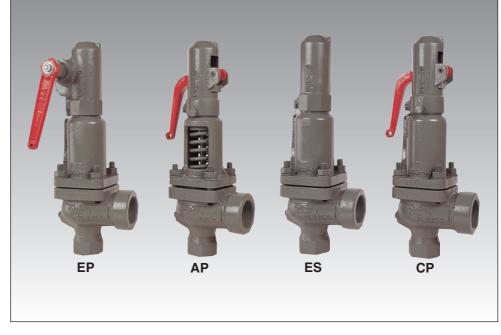
Specifications

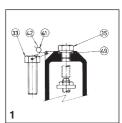
- 90° angular flow.
- Activated by direct action helicoid spring.
- Simplicity of construction ensuring minimum maintenance.
- Materials carefully selected for their resistance to corrosion. With the exception of washers and couplings, the valves are free of non-ferric materials.
- Internal body designed to offer favourable flow profile.

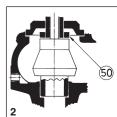
- Great discharge capacity. For liquids typically used with openings similar to proportional safety valves.
- Equipped with draining screws for removing condensation.
- Auto-centering plug.
- Threaded shaft with lever positioner facilitating immediate manual action.
- Elevator, independent of the seal, designed facilitate sudden opening when the steam expands and, with any fluid, guarantees absolute opening and closing precision.
- All the valves are supplied sealed at the set pressure requested, simulating operational conditions, and are vigorously tested.
- All components are numbered, registered and checked. If requested in advance, material, casting, test and efficiency certificates will be enclosed with the valve.

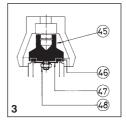
IMPORTANT

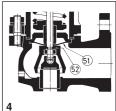
Depending on demand:

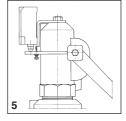

- 1.- Blocking screw which facilitates hydrostatic testing of the container which to be protected.
- 2.- Rapid limiter to reduce the coefficient of discharge.
- 3.- Fluorelastomer (Vitón) seals, Silicone's rubber, PTFE (Teflón)... etc., achieving leakage levels less than $0.3\times10^{-3}\,\frac{Pa\ cm^3}{sec.}$

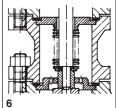

The ranges of application allow certain flexibility although we recommend limiting them to:


	F	RANGE OF	APPLICAT	TION FOR	THE SEAL	S			
FLUID					SET PRESS	SURE IN bar			
FLUID		0,2	1,8	4,0	4,8		7,0	î	30,0 40
Saturated steam		S	V			Т			
Liquids and gases			S		,	V		Т	
					TEMPERA	TURE IN °C			
SEALS		ACC	CORDING TO I	MANUFACTURI	ERS		RECOMMEN	IDED BY VYC	
		MININ	ИUM	MAX	IMUM	MINI	MUM	MAX	KIMUM
Silicone's rubber	S	-6	60	+2	200	-{	50	+1	115
Fluorelastomer (Vitón)	V		10	+2	250	-3	30	+	150
PTFE (Teflón)	Т	-26	35	+2	260	-8	30	+2	230 (1)


(1) For temperatures exceeding 230°C apply metallic seal only


- Flourelastomer (Vitón) membrane and O-ring isolating the rotating or sliding parts from the working fluid.
- 5.- Electrical contact indicating open/closed.
- 6.- Balance bellows to:
 - Protect the spring from atmospheric influences.
 - Ensure outside of valve body is totally tightness.
 - Level out external or self-generated back pressure.
- 7.- Possibility of manufacture in other types of material, for special operating conditions (high temperatures, fluids, etc.).
- Totally free of oil and grease, to work with oxygen, avoiding possible fire risks (UV- Oxygen-VBG 62).
- 9.- Special springs for critical temperatures.

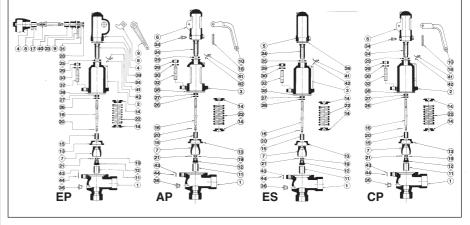


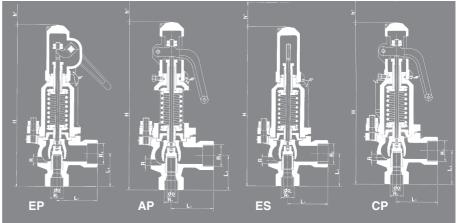


N°.	DIFOE									MA	TERI	AL									
PIECE	PIECE		CAST	IRON			NOD	ULAR	IRON			CA	ST S	TE	EL			STAINLE	ESS STEE	EL	
1 2 3 4, 5, 6 7, 7 8 9, 10 11 12 13 14 15 16 17 18 19 20, 21 223 24 25 26 27 28, 29, 48 30, 31 32, 36, 37, 38, 49 40 40 41 42 43 44 45 46 47 50 51 52	Body Closed bell Open bell Hood Elevator Cam Lever Seating Plug Lead Spring press Separator Rod Lever shaft Gudgeon Ring Salety ring Spring Gland Hollow screw Hollow screw Hollow screw Hollow screw Tod check nut Nut Washer Stud Screw Cap Coupling Coupling Seal Sealing wire Characteristic plate Rivets Plug Sealing disk Washer Limiter Membrane O-ring	Cast iron (Cast iron (Cast iron (Cast iron (Nodular iri Nodular iri Nodular iri Nodular iri Nodular iri Nodular iri Stainless s Stainless s Carbon ste Stainless s Carbon ste Carbon st	re eel (DIN-1.114 steel (DIN-1.4 ón)	3G-25) 3G-25) 3G-25) 10 GGG-40) 10 GGG-40) 10 GGG-40) 10 GGG-40) 10 GGG-40) 10 280 (AISI-4 028) (AISI-4 028) (AISI-4 028) (AISI-4 028) (AISI-4 028) (AISI-3 11 Ck-45) 11 Ck-45) 12 Ck-45) 13 Ck-67) 14 Ck-15 14 Ck-15 15 Ck-35) 15 Ck-35) 16 Ck-35) 17 Ck-35) 18 Ck-35) 18 Ck-35) 19 Ck-45) 11 Ck-15 11 Ck-15 11 Ck-15 11 Ck-15 11 Ck-15 11 Ck-35	(1) 20) 20) 20) 20) 20) 20) 20) 20) 20) 30) 30) 31)	Nodular Nodular Nodular Nodular Nodular Nodular Nodular Nodular Stainles Carbon Carbon Carbon Carbon Stainles Stainles PTFE (T Stainles PTFE (T Stainles PTFE (T Stainles Stainles Stainles Stainles Stainles Stainles Stainles Stainles Stainles	iron (DIN-iron (IN-1.4028) IN-1.4028) IN-1.4028) IN-1.4028) IN-1.4028) IN-1.4028) IN-1.4028) IN-1.4031 IN-1.4030) IN-1.4030) IN-1.4030) IN-1.4030) IN-1.4030) IN-1.4030) IN-1.4030) IN-1.4030 IN-1.4030) IN-1.4030 IN-1.4030 IN-1.4030 IN-1.40401) IN-1.40401) IN-1.40401) IN-1.40401) IN-1.40401) IN-1.40401) IN-1.40401) IN-1.40401) IN-1.40401) IN-1.40401	3G-40) 3G-40) 3G-40) 3G-40) 3G-40) 13G-40) 13G-40) 13G-40) (AISI-420) (AISI-420) (AISI-420) (AISI-420) (AISI-420) (AISI-420) (AISI-420) (AISI-420) (AISI-302) (AISI-303)		Nodu Android Nodu Nodu Nodu Nodu Nodu Nodu Nodu Nod	hite	3.7040 (b) (619.01) (c) (619.01) (c) (7.7040 (c) (7.70	GG(GGG(B)) ((68)	G-40) (1) G-40) (3) G-40) (4) G-40) (4) G-40) (4) G-40) (1) G-40)	OCrV4) (Stainless st Stain	sel (DIN-1-44) sel (DIN-1-64)	(2) (AIS-630) (2) (AIS-630) (2) (AIS-630) (2) (AIS-630) (3) (AIS-316) (3) (AIS-316) (4) (AIS-316) (4) (AIS-316) (4) (AIS-301) (4) (AIS-301) (4) (AIS-302) (5) (AIS-303) (6) (AIS-303) (7) (AIS-302) (7) (AIS-302) (7) (AIS-303) (7) (AIS-316) (7) (AIS-316) (7) (AIS-316) (7) (AIS-316) (7) (AIS-316)	1 CF8 1 CF8 1 CF8 1 CF8 1 CF8	M) M) M) M) M) M)
	R ₁ x R ₂		4	6		1		40	3/	4" x 1 1	I/4" to	1" x 1 1/2	40				40				
	DDECCUDE IN hos	16	13	13	13	40	35	32	28	24	40	35 32	28	Τ.	24 2	1 20	40	34	32	_	29
OPERATIN	MAX. TEMP. IN °C	120	200	250	300	120	200	250	300	350	120		_	-	_	0 45		200	300	+	400
CONDITION		120		<u>250</u> 0	1 300	120	200	-10	300	550	120	200 230	-10	_	330 40	0 45	120	1 200	-60		400
	1/4 in stairless start (DI							-10											-00		- 05000

(1) R.3/4 x 1 1/4 in stainless steel (DIN-1.4408) (ASTM A351 CF8M).

(2) Spring steel (DIN-1.0600 GRADE B) for wire spring Ø < 8 mm. Maximum temperature 250°C.


	R ₁ x R ₂	:	3/4" :	k 1 1/	4"		1" x	1 1/2	2"
CC	NNECTIONS	Whi ISO	tworth 228/1	cylindi de 19	rical fei 78 (DIN	male th	nread		
	do			16				20	
,	$AO = \frac{\pi \cdot do^2}{4}$		2	201			3	314	
	Н		3	320			3	370	
	h ¹		1	12			1	29	
	L ₁			80				85	
	L ₂		-	65				80	
	R		1	/4"			1	/4"	
		Whi ISO	tworth 228/1	cylindi de 19	rical fei 78 (DIN	male th N-259)	read		
	MODEL	EP	AP	ES	СР	EP	AP	ES	CP
Z	CAST IRON	5,24	4,64	4,84	5,04	6,60	5,88	6,12	6,32
WEIGHT IN Kgs.	NODULAR IRON	5,97	5,31	5,53	5,73	7,47	6,68	6,94	7,14
WE	CAST STEEL STAINLESS STEEL	5,65	5,01	5,22	5,42	7,50	6,70	6,97	7,17
	CAST IRON 2002-495.	5346	53461	53462	53463	5106	51061	51062	51063
CODE	NODULAR IRON 2002-495.	8346	83461	83462	53463	8106	81061	81062	81063
00	CAST STEEL 2002-495.	8344	83441	83442	83443	8104	81041	81042	81043
	STAINLESS STEEL 2002-495.	8342	83421	83422	83423	8102	81021	81022	81023


Recommended ranges of application. Open and closed pressures in % of set pressure.

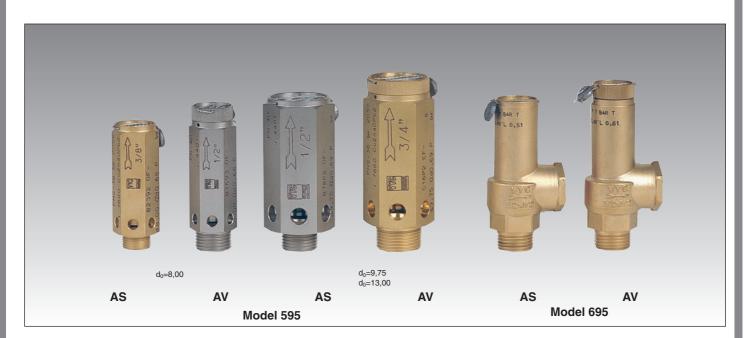
Set pressures and regulating ranges. Coefficient of discharge. Discharge capacity.

See brochure Model 496.

Model 495 R.3/4" x 1 1/4" = Model 496 DN - 20x32. do = 16. Model 495 R. 1" x 1 1/2" = Model 496 DN - 25x40. do = 20.

Founded in 1914

C+34 93 735 75 00 +34 93 735 81 35 119
TRANSVERSAL, 179-08225 TERRASSA (BARCELONA) SPAIN e-mail: info@vycindustrial.com
http://www.vycindustrial.com



Full lift safety valve with spring loading. (AIT)

Free blow-off
Directed blow-off

Model 595 Model 695

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open instantly and totally.

Design in line with the "AD-MERKBLATT A2 Specifications sheet" and "BS 6759 : Part 2 : 1984 Specification for safety valves for compressed air or inert gases".

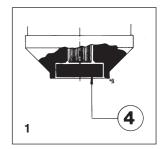
Complies with the requirements of "Regulation for pressurised equipment ITC - MIE - AP 17 4.1.".

Component test stamp: TÜV Rheinland (German technical supervision authority).

Licence No:

Specifications

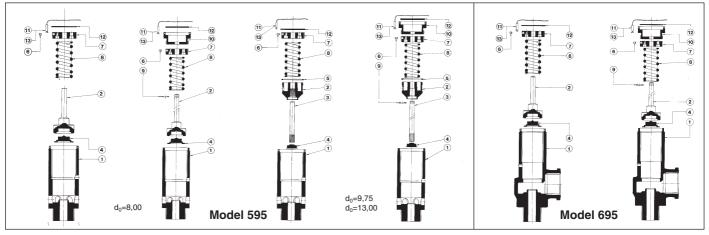
- Model AS without manual discharge operation.
- Model AV with hand wheel threaded to the body and fastened to the shaft which allows immediate manual operation.
- Activated by direct action helicoid spring.
- Simplicity of construction ensuring minimum maintenance.
- Internal body designed to offer favourable flow profile.
- Pressed or vulcanised seal with a precise finish which guarantees tightness, even greater than that required by DIN-3230.
 Sheet 3
- Great discharge capacity. For liquids typically used with openings similar to proportional safety valves.
- Totally precise open and close.
- All the valves are supplied sealed at the set pressure requested, simulating operational conditions, and are vigorously tested.
- All components are numbered, registered and checked. If requested in advance, material, casting, test and efficiency certificates will be enclosed with the valve.


1.- Fluorelastomer (Vitón) seals or PTFE (Teflón), achieving leakage levels less than

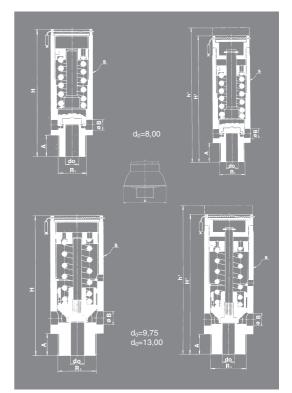
$$0.3x10^{-3} \frac{\text{Pa cm}^3}{\text{sec.}}$$

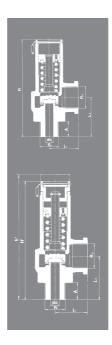
The ranges of application allow certain flexibility although we recommend limiting them to:

	RANGE OF APPLICATION FOR THE SEALS									
FLUID			SET PRESSURE IN bar							
		0,2 5	,0 I	8,5 11	,5	36,0				
Saturated steam		V			Т					
Liquids and gases		V (1) T				Т				
		TEMPERATURE IN °C								
SEALS		ACCORDING TO N	MAN	UFACTURERS	RECOMMENDED BY VYC					
		MINIMUM		MAXIMUM	MINIMUM	MAXIMUM				
Fluorelastomer (Vitón)	٧	-40		+250	-30	+150				
PTFE (Teflón)	Т	-265		+260	-80	+230				



Depending on demand:

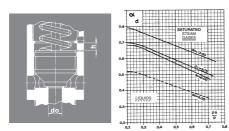

- 1.- Buna-nitryls seals, Butyl, Natural rubber, E.P.D.M., Chlorosulphonate polyethylene (Hypalon), Neoprene, Silicone's rubber, etc.
- 2.- Using the discharge deflector prevents:
 - The inconvenience of free discharge.
 - The entry of foreign bodies in the valve which will affect later operation. (Specially designed for moving transport).
- 3.- Possibility of manufacture in other types of material, for use in special working conditions (high temperatures, fluids, etc.).

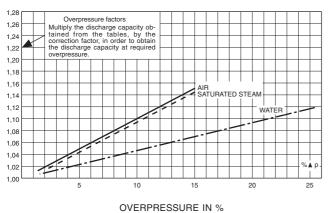

No DIEGE	PIECE	MATE	ERIAL
N.º PIECE	PIECE	BRASS	STAINLESS STEEL
1	Body	Brass (DIN-1.7660 CuZn40Pb2)	S. steel (DIN-1.4401) (AISI-316)
2	Plug	Brass (DIN-1.7660 CuZn40Pb2)	S. steel (DIN-1.4401) (AISI-316)
3	Shaft	S. steel (DIN-1.4305) (AISI-303)	S. steel (DIN-1.4305) (AISI-303)
4	Seal	Fluorelastomer (Vitón)	Fluorelastomer (Vitón)
		PTFE (Teflón)	PTFE (Teflón)
5	Limiter ring	S. steel (DIN-1.4310) (AISI-301)	S. steel (DIN-1.4310) (AISI-301)
6	End-stop	Buna-nitryl	Buna-nitryl
7	Spring press	Brass (DIN-1.7660 CuZn40Pb2)	S. steel (DIN-1.4305) (AISI-303)
8	Spring	S. steel (DIN-1.4300) (AISI-302)	S. steel (DIN-1.4300) (AISI-302)
9	Safety washer	Phosphorous bronze (CuSn6)	S. steel (DIN-1.4568)
10	Hand wheel	Brass (DIN-1.7660 CuZn40Pb2)	S. steel (DIN-1.4305) (AISI-303)
11	Sealing wire	Sealing wire	Sealing wire
12	Characteristic plate	Aluminium	Aluminium
13	Seal	Lead	Lead
14	Deflector	S. steel (DIN-1.4401) (AISI-316)	S. steel (DIN-1.4401) (AISI-316)
15	Screw	S. steel (DIN-1.4401) (AISI-316)	S. steel (DIN-1.4401) (AISI-316)
16	Washer	S. steel (DIN-1.4401) (AISI-316)	S. steel (DIN-1.4401) (AISI-316)
DI	N.	3/8"	to 1"
PI	V	PMS. 36 bar	40
	PRESSURE IN bar	36	36
OPERATING CONDITIONS	MAXIMUM TEMP. IN °C	205	230
ONDITIONS -	MINIMUM TEMP. IN °C	-60	-60

	MODEL 595													
	R ₁	3/	8"	1	/2"	1/2"		3.	/4"	3,	/4"	1	"	
COI	NNECTIONS	Wh	itworth	gas-ti	ght cy	lindrica	indrical male thread ISO 228/					1 1978 (DIN-259)		
	d _o	8,	00	8,0	00	9,	75	9,	75	13	,00	13,	,00	
A	$=\frac{\pi \cdot d_0^2}{4}$	50	,27	50	,27	74	,66	74	,66	132	2,73	132	2,73	
	Н	7	3	7	6	8	9	9	2	11	13	11	16	
	H ¹	8	1	8	4	9	8	10	01	12	23	12	26	
	h¹	8	9	9	2	10)6	10	109		132		135	
	А	9		1	2	1	2	15		15		18		
	В	6,	00	6,00		9,	50	9,	50	11,	00	11,	00	
	D	4	0	4	0	6	5	6	5	6	5	6	5	
	S	2	4	2	4	3	6	36		42(41) •		42(41) •		
		AV	AS	AV	AS	AV	AS	AV	AS	AV	AS	AV	AS	
IN Kgs.	BRASS	0,22	0,19	0,23	0,20	0,52	0,47	0,56	0,50	0,89	0,81	0,94	0,85	
WEIGHT IN Kgs.	STAINLESS STEEL	0,21	0,18	0,22	0,19	0,49	0,43	0,52	0,47	0,83	0,75	0,88	0,79	
CODE	BRASS 2002-595.	83811	83813	80211	80213	80212	80214	83411	83413	83412	83414	81011	81013	
00	S. STEEL 2002-595.	83821	83823	80221	80223	80222	80224	83421	83423	83422	83424	81021	81023	

• Stainless steel (DIN-1.4401) (AISI-316).

MODEL 695									
	R ₁ x R ₂	3/8" :	x 1/2"	1/2" :	x 1/2'				
COI	NNECTIONS	Whitworth gas	Male thread x s-tight cylindric	Female thread al ISO 228/1 1978 (DIN-259)					
	d ₀	8,	00	8,00					
,	$A_0 = \frac{\pi \cdot d_0^2}{4}$	50	,27	50,27					
	Н	8	5	8	8				
	H ¹	9	3	96					
	h ¹	10	01	104					
	А	(9	1	2				
	L ₁	2	6	26					
	L ₂	32	,50	35,50					
		AV	AS	AV	AS				
WEIGHT IN kgs.	BRASS	0,33	0,30	0,34	0,31				
CODE	BRASS 2002-695.	83811	83813	80211	80213				


RECOMMENDED RANGES OF APPLICATION									
	MODEL			EL 595	MODEL 695				
	MODEL	-	AS A		AS	AV			
	SATUF	RATED STEAM			*	*			
FLUID	GASES	INERT	*	*	*	*			
1 LOID	CAGLO	NON INERT			*	*			
	L	LIQUIDS			*	*			
OPENING PRESSURE IN % OF THE SET PRESSURE			+10%						
		SSURE IN % PRESSURE		-1	0%				


	SET	Γ PRESSURE	S ANI	D RE	GULA	ATING	RANG	iES		
	MODEL		695				595			
ENTR	Y CONNECTION	R ₁	3/8"	3/8" 1/2"		1/2"	1/2"	3/4"	3/4"	1"
EVIT	CONNECTION	R ₂	1/	2"	-	-	-	-	-	-
EXII	CONNECTION	6 x B	-	-	6 x ø	6,00	6 x ø	9,50	6 x ø	11,00
	d ₀			8,0	00		9,	75	13	,00
W.		PMS. 36 bar		3	6		3	6	3	6
SET PRESSURE IN bar	MAXIMUM	PN-40		3	6		36		36	
III.	NAIN IINAI INA	PMS. 36 bar	0,2				0,2		0,2	
S	MINIMUM	PN-40	0,2				0,	,2	0	,3
bar	0,20 to 0,70	CODE		561	160		56169		56178	
\geq	0,60 to 1,60	CODE		561	161		56170		56179	
NG	1,50 to 3,50	CODE		561	162		561	171	56180	
G R/	3,40 to 5,50	CODE		561	163		561	172	56	181
Ž	5,40 to 10,00	CODE		561	164		561	173	56	182
REGULATING RANGE	9,80 to 15,00	CODE		56165		·	561	174	56	183
	14,50 to 20,00	CODE	56166		166		56175		56184	
SPRING	19,00 to 25,00	CODE		561	167	67 56176		176	56185	
SPF	24,00 to 36,00	CODE		561	168		56177		56186	

	COEFFICIENT OF DISCHARGE									
	69	695			595					
ENTRY C	ONNECTION	R ₁	3/8" 1/2" 3/8" 1/2"		1/2"	3/4"	3/4"	1"		
EXIT CO	NNECTION	R ₂	1/	2"	-		-		_	
LAITOO	EXIT CONNECTION			-	6 x ø 6,00		6 x ø	9,50	6 x ø	11,00
	d ₀		8,00			9,75		13	,00	
	h		2,50				4,00		5,	50
	h/d ₀			0,	31		0,41		0,42	
COEFFICIENT OF		SATURATED STEAM GASES		0,	68		0,69		0,	79
DISCHARGE αd (1)	LIQUID	S	0,	51	-		_		-	-

(1) For set pressures less than 3 bar see grapf of discharge coefficient.

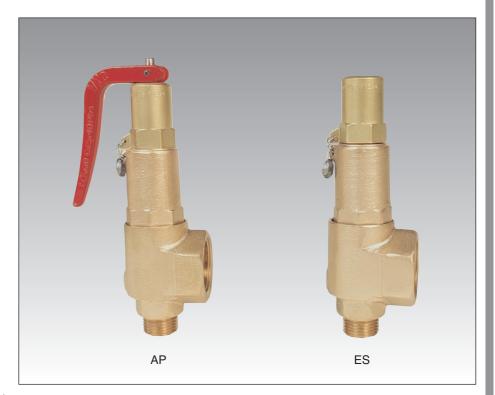
pa = Overpressure permitted [bar] absolute. p = Set pressure [bar] absolute. αd = Coefficient of discharge.

DISCHARGE CAPACITY										
MODI	EL		695			595				
ENTRY CONNECTION	R ₁	3/8"		1/2"	3/8" 1/2"	1/2" 3/4"	3/4" 1"			
EXIT	R ₂		1/2"		-	-	_			
CONNECTION	6 x B		-		6 x ø 6,00	6 x ø 9,50	6 x ø 11,00			
d _o			8,00		8,00	9,75	13,00			
$A_0 = \frac{\pi}{2}$. d ₀ ²		50,26		50,26	74,66	132,73			
p [bar]		$V_L = \sqrt{\frac{\rho_f}{\rho}}$ - Saturate	— ∆ · V _A ó V _A = d steam in Kg/h C and 1,013 ba	V_L : $\sqrt{\frac{\rho_L}{\rho_A}}$, other than water at 20°C apply: V _A = Water flow according to table. V _L = Liquid flow. ρ _A = Water density at a 20° C. (ρ _A = 998 Kg/m³). ρ _L = Liquid density.					
SET PRES IN ba	Ir	1	II	III	II	Ш	II			
0,	5	20	23	654	23	37	78			
1,0	0	30	38	1070	38	57	118			
1,	5	41	51	1445	51	78	159			
2,	0	51	64	1739	64	97	198			
2,	5	62	78	2031	78	117	236			
3,0	0	72	91	2270	91	136	277			
3,	5	80	102	2448	102	153	311			
4,0	0	89	113	2618	113	170	347			
4,	5	98	125	2776	125	188	381			
5,0	0	106	136	2927	136	205	416			
6,	0	124	159	3206	159	239	485			
7,0	0	141	182	3463	182	273	555			
8,0	0	158	205	3702	205	307	625			
9,0	0	175	227	3927	227	341	694			
10,	0	192	250	4139	250	376	763			
12,	0	227	296	4534	296	444	902			
14,	0	260	342	4897	342	513	1041			
16,	0	293	387	5236	387	581	1180			
18,	0		433	5553	433	649	1319			
20,	0		478	5854	478	718	1458			
22,	0		524	6139	524	786	1597			
24,	0		570	6412	570	855	1736			
26,	0		615	6674	615	923	1875			
28,	0		660	6926	660	991	2010			
30,	0		707	7169	707	1060	2150			
32,	0		752	7405	752	1128	2290			
34,	0		798	7632	798	1195	2427			
36,	0		843	7854	843	1264	2565			

DISCHARGE CAPACITY

Calculus according to "AD-Merkblatt A2".

Informative brochure, without obligation and subject to our General Sales Conditions.



Normal safety valve with spring loading. (AN)

Model 295

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open, at the first proportional to the pressure increase, and after instantly and totally.

Desing in line with the "AD-MERKBLATT A2 Specifications shet" and "Technical safety instructions for TRD-421 steam boilers". In accordance with UNE 9-100-86 "Safety valve" (Steam boilers).

Complies with the requirements of "Regulation for pressurised equipment ITC-MIE-AP..." (Safety valve).

Component test stamp: TÜV Rheinland (German technical supervision authority).

Licence N::

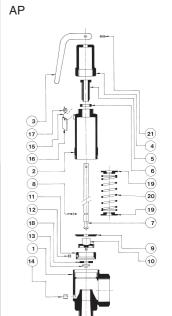
Specifications

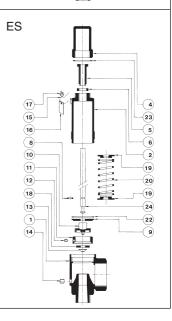
- Model AP open cap with lever.
- Model ES closed cap without lever.
- $-\,90^\circ$ angular flow.
- Activated by direct action helicoid spring.
- Simplicity of construction ensuring minimum maintenance.
- Materials carefully selected for their resistance to corrosion.
- Internal body designed to offer favourable flow profile.
- Seat and sealing disk balanced, making them extremely tightness, even exceeding DIN-3230 requeriments. Page 3.
- Great discharge capacity.
- Deflector nut designed to make easier the steam expansion, a sudden opening and to measure the blowdown of any fluid.
- Guarantees absolute opening and closing precision.
- Equipped with draining screws for removing condensation.
- Orientation of the lever by rotation.
- All the valves are supplied sealed at the set pressure requested, simulating operational conditions, and are vigorously tested.
- All components are numbered, registered and checked. If requested in advance, material, casting, test and efficiency certificates will be enclosed with the valve.

1.- Silicone's rubber, Fluorelastomer (Vitón) seals, PTFE (Teflón)... etc., achieving leakage levels less than:

0,3x10⁻³ Pa cm³

The ranges of application allow certain flexibility although we recommend limiting them to:


RANGE OF APPLICATIONS OF THE SEALS									
FLUID					SET PRESS	URE IN bar			
		0,2 1,5 3,		3,5 4	4,0 8,0		0		25,0
Saturated steam		S	V		Т				
Liquids and gases			S		V T				
		TEMPERATURE IN °C							
SEALS		ACCORDING TO MANUFACTURERS				RECOMMENDED BY VYC			
		MINI	MUM		MAXIMUM		IMUM	MAXIMUM	
Silicone's rubber	S	_	-60		+200	_	-50 +115		
Fluorelastomer (Vitón)	V	-40			+250		30	+150	
PTFE (Teflón)	Т	-2	265		+260	_	-80	+230 (1)	


(1) For temperatures exceeding 230°C apply metalic seal only.

Depending on demand:

- Buna-nitryls seals, Butyl, Natural rubber, E.P.D.M., Chlorosulphonate polyethylene (Hypalon), Neoprene, etc.
- Seal metal by metal.
- Electrical contact indicating open/closed.
- Other connections.
- Possibility of manufacture in other types of material, for special operating conditions (high temperatures, fluids, etc.).
- Totally free of oil and grease, to work with oxygen, avoiding possible fire risks (UV-Oxygen-VBG62).

N°.	PIECE	MATERIAL				
PIECE	FIECE	BRONZE				
1	Body	Bronze (DIN-2.1096.01 G-Cu Sn 5 Zn Pb)				
2	Bell	Bronze (DIN-2.1096.01 G-Cu Sn 5 Zn Pb)				
3	Lever	Stainless steel (DIN-1.4301)(AISI-304)				
4	Cap	Brass (DIN-1.7660 Cu Zn 40 Pb2)				
5	Hollow screw	Brass (DIN-1.7660 Cu Zn 40 Pb2)				
6	Hollow screw nut	Brass (DIN-1.7660 Cu Zn 40 Pb2)				
7, 24	Rod	Stainless steel (DIN-1.4401) (AISI-316)				
8	Ring	Stainless steel (DIN-1.4300) (AISI-302) (1)				
9	Lead	Brass (DIN-1.7660 Cu Zn 40 Pb2)				
10	Plug	Brass (DIN-1.7660 Cu Zn 40 Pb2)				
11	Deflector	Brass (DIN-1.7660 Cu Zn 40 Pb2)				
12	Stud	Stainless steel (DIN-1.4401) (AISI-316)				
13	Sealing nut	Brass (DIN-1.7660 Cu Zn 40 Pb2)				
14	Cap	Brass (DIN-1.7660 Cu Zn 40 Pb2)				
15	Sealing wire	Sealing wire				
16	Characteristic plate	Aluminium				
17	Seal	Lead				
18	Sealing disk	PTFE (Teflón)				
		Silicone's rubber				
		Fluorelastomer (Vitón)				
19	Spring press	Brass (DIN-1.7660 Cu Zn 40 Pb2)				
20	Spring	Stainless steel (DIN-1.4300) (AISI-302)				
21	Clip	Stainless steel (DIN-1.4310) (AISI-301)				
22	Joint	Klingerit cardboard				
23	Washer	Copper				
	R1 x R2	1/2" x 1" and 3/4" x 1 1/4"				
	PN	PMS . 25 bar				
OPERATING	PRESSION IN bar	25				
CONDITIONS	MAX. TEMP. IN °C	225				
	MIN. TEMP. IN °C	_60				

DISASSEMBLY AND ASSEMBLY

1 - Disassembly

To replace the spring (20), or clean any of the internal components of the valve, proceed in the following manner:

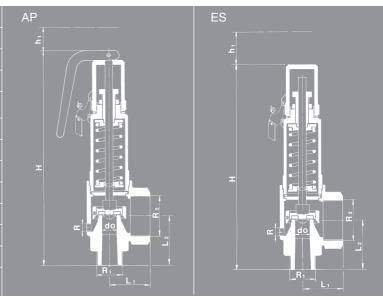
- A Withdraw the clip (21), using a punching tool, and lift the lever (3).
- B Unscrew the cap (4) and remove.
- C Holding the rod (7) (24) steady, loosen the hollow screw nut (6), until the constructive limit, and the hollow screw (5) until you note a releasing of the spring (20).
- D Unscrew the bell (2) holding the rod (7) (24) and the body (1) steady.
- E Lift the bell (2) and you will have acces to all the components.

2 - Assembly

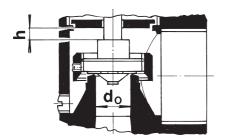
- A Enter the bell (2) and the joint (22) through the upper part the rod (7) (24).
- B Turn the bell (2) holding the rod (7) (24) and the body (1) steady.
- C Replace the hollow screw (5) with the hollow secrew nut (6).
- D Adjust the set pressure with the hollow screw (5) and fix the adjustment position with the hollow screw nut (6).
- E Change the washer (23) and lightly tighten the cap (4).
- F Place the lever (3) and fix it with the clip (21).

ADJUSTING THE SET PRESSURE

- A Proceed according to DISASSEMBLY A, B, C.
- B Proceed according to ASSEMBLY D, E, F.


ADJUSTEMENT OF THE BLOWDOWN

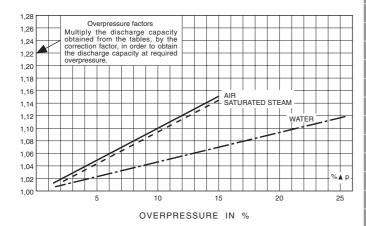
- A Slack the stud (12).
- B Twist or untwist the deflector (11) according the difference in the wished locking pressure (blowdown).
- C Fix the deflector position screwing the stud (12).


WARNING

In case to do the change of the sealing disc (18) make sure that the surface of this as well as the one of the seat into the body (1) the correctly rectified and free of impurities.

R1 x R2	1/2"	x 1"	3/4" x 1 1/4"		
CONNECTIONS	Whitworth cylind	rical Male x Femal	e thread ISO 228/1 1978 (DIN-259)		
MODEL	AP	ES	AP	ES	
d o	1	5	1	5	
$A_0 = \frac{\pi \cdot d_0^2}{4}$	17	6,7	17	6,7	
Н	161	150	212	199	
h ¹	50	39	60	46	
L1	34	34	41	41	
L2	41	41	49	49	
		1/	8"		
R	Whitworth cyline	drical Female thre	ead ISO 228/1 19	78 (DIN-259)	
WEIGHT IN Kgs.	0,71 0,64		1,50	1,43	
CODE 2002-295.	60211	60212	63411	63412	

	SET F	PRESS	URES AND	REGULATING R	ANGES
	R ₁	x R2		1/2" x 1"	3/4" x 1 1/4"
Si		MAXIMI DS AND	JM) GASES)	25	
PRESSURES IN bar	MAXIMUM (SATURATED STEAM)			25	25
SET PRE			STEAM D GASES	0,5	0,5
S			UIDS (1)	0,2	0,2
	0,20 to	0,70	CODE	56341	56348
NGE	0,50 to),50 to 1,60 CODE		56342	56349
N N	1,40 to	,40 to 3,50 COE		56343	56350
_ATIC	3,00 to	5,50	CODE	56344	56351
EGULAT IN bar	5,00 to	10,00	CODE	56345	56352
A D	9,00 to 15,00 14,00 to 20,00		CODE	50040	56353
SPRING REGULATION RANGE IN bar			CODE	56346	56354
	19,00 to	25,00	CODE	56347	56355


RI	ECOMMENDED RANGES OF	APPLICATIO	N
	MODEL	AP	ES
	SATURATED STEAM	*	
FLUID	GASES	* (1)	*
	LIQUIDS	* (1)	*

(1) With noxious or expensives fluids apply only ES model. If external overpressure exists, the AP model cannot be used. With external constant overpressure, the spring is adjusted deducting the overpressure from the set pressure.

COEFFICIENT OF DISCHARGE FOR	R SATURATED STE	EAM AND GASES
R1 x R2	1/2" x 1"	3/4" x 1 1/4"
do	15	15
h	2,20	3,75
h/do	0,14	0,25
COEFFICIENT E 0,50 to 1,00	0,29	0,55
OF DISCHARGE Add 1,00 to 25,00	0,35	0,62

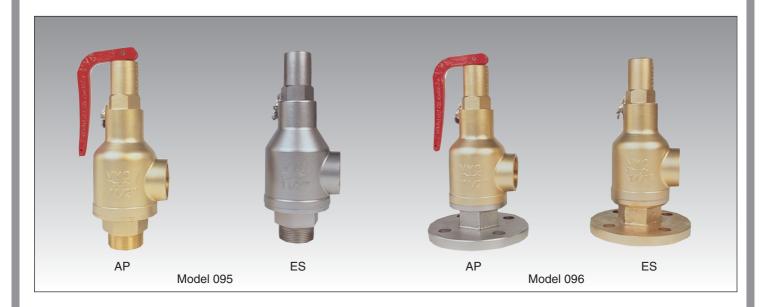
 p_a = Overpressure permitted [bar] absolute.

p = Set pressure [bar] absolute.

	DISCH	IARGE C	CAPACIT	Υ		
R1 x R2		1/2" x 1"		3/	4" x 1 1/	4"
do		15			15	
$A_0 = \frac{\pi \cdot d_0^2}{4}$		176,7			176,7	
4	For other	er, not so den	se liquids, ot	her than wate	er at 20°C app	oly:
"P ,		V _L =	$\sqrt{\frac{Q_A}{Q}}$. $V_A \stackrel{d}{=}$	V _A = V _L .	$\frac{Q_L}{Q_A}$	
[bar]		ed steam in Ko C and 1,013 b at 20°C in l/h.		$\mathcal{L}_{\lambda} = VVa$ (Q_{i}	ter flow accord uid flow. ter density at a =998 Kg/m³). uid density.	ing to table.
SET PRESSURE IN bar	1		III		Ш	Ш
0,5	40	50	1780	76	92	3435
1,0	54	68	2517	102	128	4858
1,5	74	101	3082	137	160	5959
2,0	98	122	3560	175	220	6877
2,5	113	143	3980	202	255	7588
3,0	128	162	4360	229	290	8299
3,5	144	183	4709	257	328	9010
4,0	160	204	5034	285	360	9720
4,5	176	231	5339	323	395	10306
5,0	192	258	5628	361	430	10870
6,0	225	286	6165	400	510	11908
7,0	255	327	6659	452	580	12859
8,0	285	368	7119	505	650	13745
9,0	315	409	7551	560	723	14576
10,0	346	450	7959	615	800	15370
12,0	407	530	8719	720	940	16828
14,0	468	612	9417	880	1090	18185
16,0	525	694	10068	935	1230	19440
18,0	588	775	10678	1045	1380	20610
20,0	647	857	11256	1150	1520	21725
22,0	709	940	11805	1260	1665	22786
24,0	770	1020	12330	1370	1810	23799
05.0	040	1000	10505	4.470	1001	0.4000

Calculus according "AD-Merkblatt A2".

Informative brochure, without obligation and subject to our General Sales Conditions.



Proportional safety valve with spring loading. (AP)

Thread connection Flange connection

Model 095 Model 096

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open proportional to the pressure increase.

Desing in line with the "AD-MERKBLATT A2 Specifications shet" and "Technical safety instructions for TRD-421 steam boilers". In accordance with UNE 9-100-86 "Proportional safety valve" (Steam boilers).

Complies with the requirements of "Regulation for pressurised equipment ITC-MIE-AP..." (Proportional safety valve).

Component test stamp: TÜV Rheinland (German technical supervision authority).

Licence N::

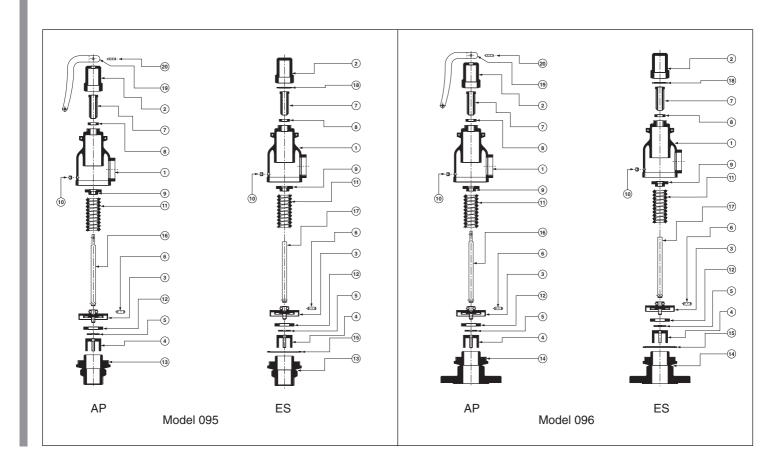
Specifications

- Model AP open cap with lever.
- Model ES closed cap without lever.
- 90° angular flow.
- Activated by direct action helicoid spring.
- Simplicity of construction ensuring minimum maintenance.
- Materials carefully selected for their resistance to corrosion.
- Internal body designed to offer favourable flow profile.
- Seat and sealing disk balanced, making them extremely tightness, even exceeding DIN-3230 requeriments. Page 3.
- Great discharge capacity.
- Guarantees absolute opening and closing precision.
- Equipped with draining screws for removing condensation. (For $d_0 > 45,20$ mm.).
- Orientation of the lever by rotation.
- All the valves are supplied sealed at the set pressure requested, simulating operational conditions, and are vigorously tested.
- All components are numbered, registered and checked. If requested in advance, material, casting, test and efficiency certificates will be enclosed with the valve.

IMPORTANT

1.- Silicone's rubber, Fluorelastomer (Vitón) seals, PTFE (Teflón)... etc., achieving leakage levels less than:

 $0.3x10^{-3} \frac{\text{Pa cm}^3}{\text{sec.}}$


The ranges of application allow certain flexibility although we recommend limiting them to:

			RANGE	OF APPLI	CATIONS OF THE S	EALS		
					SET PRESS	URE IN bar		
FLUID		0,2 1	,5 I	3,5 4	,0 6	,0 I		25,0
Saturated steam		S	V			Т		
Liquids and gases			S	•	V	-	Г	
					TEMPERAT	TURE IN °C		
SEALS		AC	CCORDING T	O MANUF	ACTURERS	RECOMMEND	ED BY VYC	
		MIN	IMUM		MAXIMUM	MINIMUM	MAXIMUM	
Silicone's rubber	S	-	-60		+200	-50	+115	
Fluorelastomer (Vitón)	V	-	-40		+250	-30	+150	
PTFE (Teflón)	Т	-2	265		+260	-80	+230 (1)	

(1) For temperatures exceeding 230°C apply metalic seal only.

Depending on demand:

- Buna-nitryls seals, Butyl, Natural rubber, E.P.D.M., Chlorosulphonate polyethylene (Hypalon), Neoprene, etc.
- Seal metal by metal.
- Electrical contact indicating open/closed.
- Other connections.
- Possibility of manufacture in other types of material, for special operating conditions (high temperatures, fluids, etc.).
- Totally free of oil and grease, to work with oxygen, avoiding possible fire risks (UV-Oxygen-VBG62).

TYPE	N°. PIECE	PIECE	R1 x R2 DN1 x R2	1/4" x 1/4" 8 x 1/4"	3/8" x 3/8" 10 x 3/8"	1/2" x 1/2" 15 x 1/2"	3/4" x 3/4" 20 x 3/4"	1" x 1" 25 x 1"	1 1/4" x 1 1/4" 32 x 1 1/4"	1 1/2" x 1 1/2" 40 x 1 1/2"	2" x 2" 50 x 2"	2 1/2" x 2 1/2" 65 x 2 1/2"	3" x 3" 80 x 3"	4" x 4" 100 x 4"	PN	OP CO A	ERAT NDITIO	ING ONS C
	1	Body					-1.7660 Cu				*	Bronze (DIN-2					<u> </u>	Ť
	2	Cap			Brass	(DIN-1.76	60 CuZn 40	Pb2)		*		Bronze (DIN-2	2.0492.01 G-	CuZn 15Si4)	1			
40	3	Coupling				•	(DIN-1.766		0Pb2)			Bronze (DIN-2	2.0492.01 G-	CuZn 15Si4)	1			
SS	4	Lead					(DIN-1.766					Bronze (DIN-2	2.0492.01 G-	CuZn 15Si4)	1			
Æ	7	Hollow screw					`	Brass (DIN	N-1.7660 Cu	Zn 40Pb2)					1			
/B	8	Hollow screw r	nut					Brass (DIN	N-1.7660 Cu	Zn 40Pb2)					1	l		١.
H	9	Spring press						Brass (DIN	N-1.7660 Cu	Zn 40Pb2)					16	16	200	-6
Ž	10	Cap										Brass (DIN	-1.7660 Cu2	Zn 40Pb2)	1			
BRONZE / BRASS	13	Screwed seat			Brass	(DIN-1.76	60 CuZn 40	Pb2)		*		Bronze (DIN-2	2.0492.01 G-	CuZn 15Si4)	1			
ш	14	Flanged seat					Bro	nze (DIN-	2.0492.01 G	-CuZn 15Si	4)	•			1			
	15	Body coupling						Klir	gerit cardbo	ard					1			
	18	Hood coupling							Copper						1			
	1	Body				Brass (DIN	-1.7660 Cu	Zn 40Pb2)	1		*	Bronze (DIN-2	2.0492.01 G-	CuZn 15Si4)				Г
	2	Cap			Brass	(DIN-1.76	60 CuZn 40	Pb2)		*		Bronze (DIN-2	2.0492.01 G-	CuZn 15Si4)	1			
	3	Coupling		Stai	inless steel	(DIN-1.44	01) (AISI-31	16)	Stai	inless steel ((DIN-1.44	08) (ASTM A	351 CF8N	۸)	1			
	4	Lead					Stainles	s steel (DII	N-1.4408) (A	ASTM A351	CF8M)				1			
\circ	7	Hollow screw						Brass (DIN	N-1.7660 Cu	Zn 40Pb2)					1			
MIXED	8	Hollow screw r	nut					Brass (DIN	N-1.7660 Cu	Zn 40Pb2)					25	25	200	-
€	9	Spring press						Brass (DIN	N-1.7660 Cu	Zn 40Pb2)					7 23	25	200	-
	10	Сар										Brass (DIN	-1.7660 Cu2	Zn 40Pb2)				
	13	Screwed seat					Stainless	steel (DIN	-1.4408) (A	STM A351 C	CF8M)							
	14	Flanged seat					Stainless	steel (DIN	-1.4408) (A	STM A351 C	CF8M)							
	15	Body coupling						F	PTFE (Teflór	1)								
	18	Hood coupling							Copper									L
	1	Body					Stainless	steel (DIN	-1.4408) (A	STM A351 C	CF8M)							
	2	Сар			Stainless	steel (DIN-	1.4305) (AIS	SI-303)		Stainless	steel (DIN	I-1.4408) (AS	TM A351	CF8M)				
긢	3	Coupling		Stain	iless steel (DIN-1.440	1) (AISI-316	·				08) (ASTM A	351 CF8N	1)				
STEEL	4	Lead								STM A351 C								
S	7	Hollow screw							`	5) (AISI-303	<u> </u>				1			
STAINLESS	8	Hollow screw r	nut							5) (AISI-303					25	25	250	-
Щ	9	Spring press					Stair	nless steel	(DIN-1.430	1) (AISI-304	.)							
Ę	10	Сар										Stainless stee	l (DIN-1.440	1) (AISI-316)				
Τć	13	Screwed seat								STM A351 C					1			
0)	14	Flanged seat					Stainless		, ,	STM A351 C	CF8M)				1			
	15	Body coupling							PTFE (Teflór	,					1			
	18	Hood coupling							PTFE (Teflór	,								L
	5	Washer							•	1) (AISI-316					1			
	6	Clip							•	0) (AISI-301					1			
	11	Spring					Stainle	`		(AISI-302)	(1)				1			
	12	Sealing disk							PTFE (Teflór						-			
									licone's rubb						-			
									tomer (Vitón	,	_				1			
	16,17	Rod							(DIN-1.430	1) (AISI-304	.)	İ			-			
	19	Lever		St	tainless ste	el (DIN-1.4	301) (AISI-			·	*	Brass (DIN	-2.0290.01	G-Cu65Zn	1			
	20	Clip					Stair	nless steel	(DIN-1 430	1) (AISI-304	.)				1			

(1) Spring steel (DIN-1.0600 GRADO B) for wide spring \varnothing > 10 mm. but < 14 mm. Vanadium chrome steel (DIN-1.8159 50Cr V4) for wide spring \emptyset > 13 mm.

- * Brass (DIN-2.0340.02 GK-Cu60Zn).
- Brass (DIN-1.7660 CuZn 40Pb2).
 - $\mathbf{B} = \mathsf{MAX}.\,\mathsf{TEMP}.\,\mathsf{IN}\,^\circ\mathsf{C}$
 - C = MIN. TEMP. IN °C

DISASSEMBLY AND ASSEMBLY

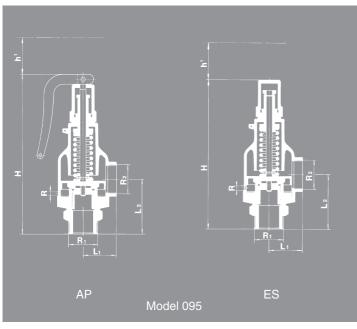
1 - Disassembly

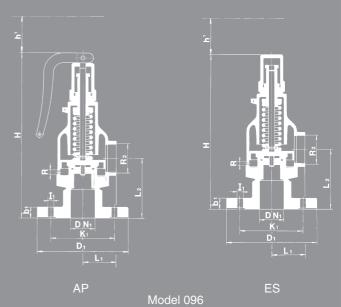
To replace the spring (11), or clean any of the internal components of the valve, proceed in the following manner:

- A Withdraw the clip (20), using a punching tool, and lift the lever (19).
- B Unscrew the cap (2) and remove.
- C Holding the rod (16) (17) steady, loosen the hollow screw nut (8), until the constructive limit, and the hollow screw (7) until you note a releasing of the spring (11).
- D Unscrew the body (1) holding the rod (16) (17) and the seat (13) (14) steady.
- E Lift the body (1) and you will have acces to all the components.

2 - Assembly

- A Enter the body (1) and the joint (15) through the upper part the rod (16) (17).
- B Turn the body (1) holding the rod (16) (17) and the seat (13) (14) steady.
- C Replace the hollow screw (7) with the hollow secrew nut (8).
- D Adjust the set pressure with the hollow screw (7) and fix the adjustment position with the hollow screw nut (8).
- E Change the coupling (18) and lightly tighten the cap (2).
- F Place the lever (19) and fix it with the clip (20).

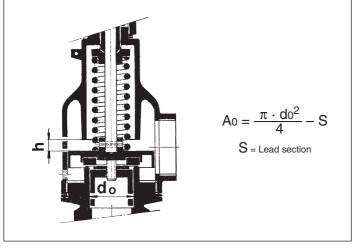

ADJUSTING THE SET PRESSURE


- A Proceed according to DISASSEMBLY A, B, C.
- B Proceed according to ASSEMBLY D, E, F.

WARNING

In case to do the change of the sealing disc (12) make sure that the surface of this as well as the one of the seat (13) (14) the correctly rectified and free of impurities.

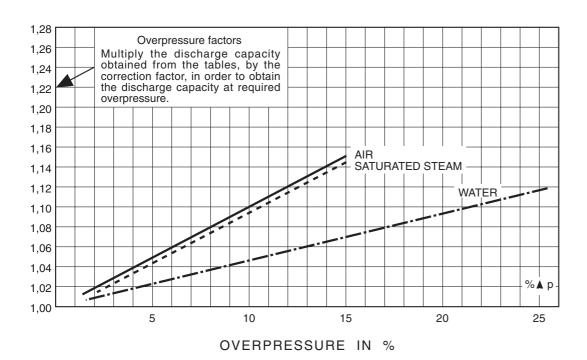
	R1 x DN1 x			1/4 × 1/4		8 × 1/4	0/C : 0/C	5/8 X 5/8	10 > 0/0	10 x 4/8	1/2" x 1/2"		15 x 1/2"		3/4" × 3/4"		20 x 3/4"		1"× 1"		25 x 1"		1 1/4" x 1 1/4"		32 x 1 1/4"		1 1/2" x 1 1/2"		40 × 1 1/2"	, "c	2 Y Z	50 × 2	1	0.1/0" v 0.1/0"	711 7 V 711 7	10/F C 2 4/0	7/1 7 Y CO		ب × د	3	80 × 3	"\ '\	4 × 4	100 \$	100 X 4
	MOD	EL	095 AP	095 ES	096 AP	096 ES	095 AP	095 ES	096 AP	096 ES	095 AP	095 ES	096 AP	096 ES	095 AP	080 ES	096 AP	090 ES	095 AP	095 55	USO AP	USB ES	14 C80	096 AP	096 F.S	095 AP	095 ES	096 AP	096 ES	095 AP	095 ES	096 AP	096 ES	095 AP	095 ES	096 AP	096 ES	095 AP	095 ES	096 AP	096 ES	095 AP	095 ES	096 AP	096 ES
	d o				,20			10,								20,8				25,2				32,20			38	,20							60,					,20			95,		
A	$0 = \frac{\pi \cdot 0}{2}$	$\frac{d_0^2}{1} - S$		29	,50			29,				120				07,				47,1				43,00)		780	0,40			1157	7,60		2	215	5,60			316	1,40)		5452	2,10	
	Н		139	129	148	138	139	129	148	138	150	140	165	155	168	86	176	100	161	181	100	227	477	232	220	263	247	270	254	331	315	334	318	373	349	373	349	439	415	441	417	202	483	202	483
	h ¹											38																			8	0								00					
	L ₁				0			3																44							7	0			7					0					
	L2		4		5	2		3		2			67													9	91			11			3	12	!5	12	25	10	36	10		16			3
	R																																												
CC		TIONS	V	Vhit	wort	h cyl	lindr	rical	Mal	le x	Fem		threa	ad I	SO 2			978	(DIN	I-25																								22	20*
щ	2533 /2545	D1	-		8	0			91	0						1				ļ	115			1	140			1					5				35			20	00	_		23	35°
INTAKE FLANGE	DIN-2532/2533 DIN-2544/2545	K1	-		5	5		-	61	0												ł		1	100			1.		-	-		5			14	15	-		16				19	0°
AKE F		BRONZE BRASS	-			50 2		-					14				14				14				18 18				8	-	-	18 20				2		-			22	-		22	2°
IN	* PN-16 • PN-25	MIXED S: STEEL	-			4		-	10	6			16	-			18			Ŧ	18			Ŧ	18				8	-	-	20)		-	2:					24	-		2	4
St		ZE/BRASS	09'0	0,52	1,05	86,0	0,61	0,51	4 72 22	1,10	0,83	0,74	1,64	1,54	1,05	78,0	4 00'z	06,1	- 0c, ;	1,41	4	7,80	- t t	4.15	4 32	3,76	3,50	6,00	4 05,5	00,9	5,80	4 09'8	8,10	7,30	. 06'9	10,80	11,30	9,80	9,40	13,80	16,00	21,50	26,10	<u>9</u>	
IN Kg		IIXED	0,60	0,50	1,03	0,96,0	0,60	0,50	1,22	1,15 1		0,70										Z, /U Z		4.00			3,30	5,80 6	5,30 5	5,70 6	5,50 5		7,70 8	7,00,7	9 09'9	10,50 10	11,00 11	9,50	9,10	13,50 13	5,70 16	21,20 21	25,00 26	27,00 28,10	29,20 30,30
WEIGHT IN Kgs.		LESS STEEL	0,53	0,46 0	0,99	0,92	0,55 0	0,45 0	1,18	1,11		0,62 0										2,42		3,60			3,00	5,50 5	5,00 5	5,40 5	5,30 5		7,10 7	6,40 7	9 00'9	9,90 10	10,60	9,10	8,70 9	13,20 13	14,30 15	20,10	24,00 25	24,50 27	25,60 29
<i>\left\)</i>	01711112			_			0		_	_	0	-		_†			Τ,	Ť	ij.		+				i.		1 3	re.		5				9	_	о —	1 10	0)	B	13	-				
	BRON	ZE/BRASS	2002-095.5041	2002-095.5041	2002-096.5041	2002-096.50411	2002-095.5381	2002-095.5381	2002-096.5381	2002-096.5381	2002-095.5021	2002-095.5021	2002-096.5021	2002-096.5021	2002-095.5341	ZUUZ-U95.534 I	2002-096.5341	ZUUZ-U96.5341	Z00Z-095.5101	Z00Z-095.5101	2002-096.5101	Z00Z-096.5101	90.0141	2002-095.51411	2002-096 5141	2002-095.5121	2002-095.5121	2002-096.5121	2002-096.5121	2002-095.5201	2002-095.5201	2002-096.5201	2002-096.5201	2002-095.5221	2002-095.5221	2002-096.5221	2002-096.5221	2002-095.5301	2002-095.5301	2002-096.5301	2002-096.5301	2002-095.5401	2002-095.5401	2002-096.5401	2002-096.54011
			2002-0	2002-0	2002-0	2002-0	2002-0	2002-0	2002-0	2002-0	2002-0	2002-0	2002-0	2002-0	2002-0	2002-0	2002-0	2002-0	2002-0	2002-0	2002	2002-0	0-2002	2002-0	0-2002	2002-0	2002-0	2002-0	2002-0	2002-0	2002-0	2002-0	2002-0	2002-0	2002-0	2002-0	2002-0	2002-0	2002-0	2002-0	2002-0	2002-0	2002-0	2002-0	2002-0
			83	131	<u>ج</u>	131	83	331	င္သ	331	8	31	က္လ	31	සු <u>:</u>	2 1	_Σ 3	2 5	2 3	15 5	2 6	2 2	2 3	- E	<u> </u>	. g	331	83	:31	33	31	83	31	83	31	83	31	83	31	33	31	83	31	33	131
CODE	M	IIXED	2002-095.6043	2002-095.6043	2002-096.6043	2002-096.6043	2002-095.6383	2002-095.6383	2002-096.6383	2002-096.6383	2002-095.6023	2002-095.6023	2002-096.6023	2002-096.6023	2002-095.6343	ZUUZ-U95.6343	2002-096.6343	2002-096.6343	2002-095.6103	2002-095.6103	2002-096.6103	ZUUZ-U96.61U3	0.000	2002-095.6143 2002-096.6143	2002-096 6143	2002-095.6123	2002-095.6123	2002-096.6123	2002-096.6123	2002-095.6203	2002-095.6203	2002-096.6203	2002-096.6203	2002-095.6223	2002-095.6223	2002-096.6223	2002-096.6223	2002-095.6303	2002-095.6303	2002-096.6303	2002-096.6303	2002-095.6403	2002-095.6403	2002-096.6403	2002-096.6403
O			2002-	2002-	2002-	2002	2002	2002-	2002-	2002	2002-	2002-	2002-	2002-	2002-	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002-	2002-	2002-	2002-	2002	2002-	2002-	2002-	-2002	2002-	2002	-2005	2002-	2002-	2002-	2002-	2002-	2002-	2002-	2002-
			42	421	42	1421	82	821	82	821	22	221	22	221	342	1245	242	1242	70 25	120	024	120	74.7	421	421	22	221	22	221	302	:021	202	:021	22	221	22	221	202	120	302	120	.02	-021	.02	.021
	STAINL	ESS STEEL	2002-095.6042	2002-095.60421	2002-096.6042	2002-096.60421	2002-095.6382	2002-095.63821	2002-096.6382	2002-096.63821	2002-095.6022	2002-095.60221	2002-096.6022	2002-096.60221	2002-095.6342	ZUUZ-U95.634ZI	2002-096.6342	2002-096.63421	2002-095.6102	2002-095.61021	2002-096.6102	ZUUZ-U96.61UZ 2002-095 6142	0.000-2	2002-095.6142	2002-096 61421	2002-095.6122	2002-095.61221	2002-096.6122	2002-096.61221	2002-095.6202	2002-095.62021	2002-096.6202	2002-096.62021	2002-095.6222	2002-095.6222	2002-096.6222	2002-096.62221	2002-095.6302	2002-095.63021	2002-096.6302	2002-096.63021	2002-095.6402	2002-095.64021	2002-096.6402	2002-096.64021
			2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	7007	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	2002
	-	-										i													i																				


3/8" × 3/8" 8/8" × 3/8" 8 × 1/4" 10 × 3/8" 10 × 3/8"	SPRING REGULATING RANGE IN bar	CODE	MAXI (LIQUIDS A	MUN	PRESSI	MUM		MUM
DN ₁ x R ₂	0,5 at 1,0	CODE	MAXI (LIQUIDS A	MUN	MAXI	MUM	MINI	MUM
	0,5 at 1,0		LIGOIDOTT		KSATURATI	FD STFAM)		
1/4" × 1/4" 3/8" × 3/8" 8 × 1/4" 10 × 3/8"			PN-16	PN-25	PN-16	PN-25	STEAM & GASES	LIQUIDS (1)
1/4" x 1/4" 3/8" x 3/8" 8 x 1/4" 10 x 3/8"	44 -4 40	56024 •					u unoco	(1)
1/4" × 1/, 3/8" × 3/, 8 × 1/, 10 × 3/,	1,1 at 1,9	56025 •						
3/8" × 3/8" × 10 × 10 × 10 × 10 × 10 × 10 × 10 × 1	2,0 at 3,9	56026 •						
3/8	4,0 at 7,9	56027 •	16	25	13	20	0,5	0,2
	8,0 at 13,4	56028 •						
	13,5 at 19,8 19,9 at 25,0	56029 • 56030 •						
	0,5 at 1,0	56033 •						
2.2	1,1 at 2,0	56034 •						
1/2" ×1/2" 15 × 1/2"	2,1 at 4,0	56035 •						
2 2	4,1 at 8,0	56036 •	16	25	13	20	0,5	0,2
= =	8,1 at 12,0	56037 •						
	12,1 at 19,0 19,1 at 25,0	56038 • 56039 •						
	0,5 at 1,0	56043 •						
=. =.	1,1 at 2,0	56044 •						
3/4" x 3/4" 20 x 3/4"	2,1 at 4,0	56045 •						
× ×	4,1 at 6,0	56046 •	16	25	13	20	0,5	0,2
2 × ×	6,1 at 10,0	56047 •						
	10,1 at 13,2	56048 • 56049 •						
	13,3 at 17,5 17,6 at 25,0	56050 •						
	0,5 at 1,5	56053 •						
	1,6 at 2,6	56054 •						
1" × 1" 25 × 1"	2,7 at 4,0	56055 •						
_ × ×	4,1 at 7,5	56056 •	16	25	13	20	0,5	0,2
- 6	7,6 at 11,0	56057 •						
	11,1 at 14,5 14,6 at 20,0	56058 • 56059 •						
	20,1 at 25,0	56060 •						
	0,5 at 1,5	56062 •						
=. =.	1,6 at 2,6	56063 •						
7 7	2,7 at 4,0	56064 •						
5.5	4,1 at 7,5	56065 •	16	25	13	20	0,5	0,2
1/4" × 1 1/4" 32 × 1 1/4"	7,6 at 10,0 10,1 at 12,5	56066 • 56067 •						
3 4	12,6 at 15,5	56068 •						
-	15,6 at 19,5	56069 •						
	19,6 at 25,0	56070 •						
	0,5 at 0,8	56073 •						
1/2"	0,9 at 2,0	56074 •						
	2,1 at 4,0 4,1 at 5,5	56075 • 56076 •	16	25	13	20	0,5	0,2
1 1/2" x . 40 x .	5,6 at 8,0	56077 •					-,-	-,-
2/ 4	8,1 at 11,5	56078 •						
-	11,6 at 15,7	56079 •						
	15,8 at 25,0	56080 •						
	0,5 at 1,0	56083 •						
	1,1 at 2,0	56084 •						
× × ×	2,1 at 5,2 5,3 at 6,7	56085 • 56086 •	16	25	13	20	0,5	0,2
2" 20	6,8 at 11,0	56087 •						
	11,1 at 13,8	56088 •						
	13,9 at 18,9	56089 •						
	19,0 at 25,0	56090 -						
1/2"	0,5 at 1,5	56092 • 56093 •						
7 7	1,6 at 5,0 5,1 at 9,0	56093 • 56094 •						
× ×	9,1 at 11,8	56095 -	16	25	13	20	0,5	0,2
1/2" x 65 x	11,9 at 15,0	56096 -						
2 1/	15,1 at 19,0	56097 -						
	19,1 at 25,0	56098 ▲						
	0,5 at 2,0	56099 •						
	2,1 at 6,0	56100 • 56101 –						
3" × 3" 80 × 3"	6,1 at 8,8 8,9 at 12,0	56101 −	16	25	13	20	0,5	0,2
.s 38	12,1 at 18,5	56103 ▲		-	-		-,-	-,-
	18,6 at 21,5	56104 ▲						
	21,6 at 25,0	56105 ▲						
	0,5 at 2,0	56106 •						
4" × 4" 100 × 4"	2,1 at 6,0	56107 -						
	6,1 at 9,0 9,1 at 14,0	56108 ▲ 56109 ▲	16	25	13	20	0,5	0,2
=	14,1 at 19,0	56110 ▲						
	19,1 at 25,0	56111 ▲						

Stainless steel (DIN-1.4300) (AISI-302).

Sprin steel with Epoxi coating (DIN-1.0600 GRADE B).
 Vanadium chrome steel with Epoxi coating (DIN-1.8159 50CrV4).

⁽¹⁾ For set pressures less than 0,5 bar previous consult with our technical department.


				COI	EFFICIENT (OF DISCHAF	RGE				
R1 x R2 DN1 x R2	1/4" x 1/4" 8 x 1/4"	3/8" x 3/8" 10 x 3/8"	1/2" x 1/2" 15 x 1/2"	3/4" x 3/4" 20 x 3/4"	1" x 1" 25 x 1"	1 1/4" x 1 1/4" 32 x 1 1/4"	1 1/2" x 1 1/2" 40 x 1 1/2"	2" x 2" 50 x 2"	2 1/2" x 2 1/2" 65 x 2 1/2"	3" x 3" 80 x 3"	4" x 4" 100 x 4"
do	10,20	10,20	16,20	20,80	25,20	32,20	38,20	45,20	60,20	75,20	95,20
h	2,50	2,50	3,00	5,00	6,00	8,50	11,00	12,00	15,00	19,00	28,00
h/do	0,25	0,25	0,19	0,24	0,24	0,26	0,29	0,27	0,25	0,25	0,29
$A_0 = \frac{\pi \cdot d_0^2}{4} - S$	29,50	29,50	120,30	207,50	347,10	543,00	780,40	1157,60	2155,60	3161,40	5452,10

RI	ECOMMENDED RANGES OF	APPLICATIO	N
	MODEL	AP	ES
	SATURATED STEAM	*	
FLUID	GASES	* (1)	*
	LIQUIDS	* (1)	*

(1) With noxious or expensives fluids apply only ES model. If external overpressure exists, the AP model cannot be used. With external constant overpressure, the spring is adjusted deducting the overpressure from the set pressure.

							DISCH	HARGE	CAPAC	CITY								
R1 x R2 DN1 x R2		1/4" x 1/4 8 x 1/4			3/8" x 3/8 10 x 3/8			1/2" x 1/2 15 x 1/2		;	3/4" x 3/4" 20 x 3/4"			1" x 1" 25 x 1"		1	1/4" x 1 1 32 x 1 1	/4" /4"
do		10,2			10,2			16,2			20,8			25,2			32,2	
$A_0 = \frac{\pi \cdot do^2}{4} - S$		29,50			29,50			120,3			207,5			347,1			543	
p [bar] SET PRESSURE		Air at 0°	ed stear °C and [·] at 20°C i	1,013 b			or other,	not so d V _L =	ense liqu $\sqrt{\frac{Q_A}{Q_L}}$	ids, othe		_	_ '''	<i>/</i> :	$V_L = L$ $Q_A = V$	Nater flow Liquid flow Nater dens Q _A =998 K Liquid dens	sity at a 20 g/m³).	
IN bar	1	Ш	III	1	Ш	III	- 1	П	III	- 1	Ш	III	1	Ш	Ш	- 1	Ш	III
0,5	25	30	342	25	30	342	42	53	514	51	62	737	58	88	1036	65	123	1290
1,0	39	45	489	39	45	489	63	80	735	77	94	1053	88	133	1480	99	185	1844
1,5	42	51	582	42	51	582	68	94	857	86	106	1228	95	147	1674	114	227	2015
2,0	45	57	675	45	57	675	74	108	980	96	119	1403	102	161	1869	130	270	2187
2,5	50	66	768	50	66	768	83	120	1100	113	131	1590	121	180	2020	152	310	2707
3,0	54	75	861	54	75	861	91	133	1221	130	143	1778	140	199	2170	175	350	3227
3,5	60	85	955	60	85	955	110	145	1342	136	159	1944	154	233	2350	223	387	3468
4,0	66	96	1050	66	96	1050	129	157	1463	143	175	2110	168	268	2530	272	425	3710
4,5	70	106	1127	70	106	1127	137	173	1619	155	197	2282	195	282	2802	288	461	4130
5,0	75	117	1204	75	117	1204	146	190	1775	167	219	2455	222	296	3075	305	497	4551
5,5	79	127	1281	79	127	1281	155	206	1931	179	241	2627	249	310	3347	322	533	4971
6,0	84	138	1359	84	138	1359	164	223	2088	192	264	2800	276	325	3620	339	570	5392
6,5	87	148	1428	87	148	1428	171	255	2191	208	289	2902	300	341	3780	361	606	5690
7,0	91	159	1497	91	159	1497	178	287	2294	224	314	3004	324	358	3940	383	642	5988
7,5	95	169	1566	95	169	1566	185	319	2397	240	339	3106	348	375	4100	405	678	6286
8,0	99	180	1635	99	180	1635	192	352	2500	256	365	3208	372	392	4260	427	715	6584
9,0	107	204	1740	107	204	1740	226	376	2670	296	417	3404	412	442	4588	491	767	7292
10,0	115	228	1845	115	228	1845	260	400	2840	336	470	3600	453	493	4916	556	820	8000
11,0	123	252	1957	123	252	1957	300	426	3000	387	517	3780	506	541	5142	622	890	9010
12,0	132	276	2070	132	276	2070	340	452	3160	439	565	3960	560	590	5368	689	960	10020
13,0	139	301	2167	139	301	2167	372	476	3324	482	607	4102	602	655	5820	732	1042	10535
14,0	147	327	2265	147	327	2265	405	500	3488	526	650	4244	645	720	6272	776	1125	11050
15,0	154	349	2341	154	349	2341	442	526	3624	548	697	4402	683	760	6481	838	1202	11525
16,0	162	372	2418	162	372	2418	480	552	3760	570	745	4560	721	800	6690	900	1280	12000
17,0	169	396	2521	169	396	2521	520	572	3890	610	832	4750	796	883	6945	970	1360	12330
18,0	177	420	2625	177	420	2625	560	592	4020	650	920	4940	872	967	7200	1040	1440	12660
20,0	192	465	2829	192	465	2829	640	644	4360	725	1016	5076	956	1180	7740	1180	1600	13316
22,0		510	3036		510	3036		696	4652		1112	5092		1310	8216		1772	13976
24,0		544	3190		544	3190		750	4808		1184	5416		1415	8598		1896	14560
25,0		579	3345		579	3345		805	4964		1256	5740		1520	8980		2020	15144

							DISCH	ARGE C	CAPACI	TY					
1	1/2" x 1 1/ 40 x 1 1/	2" 2"		2" x 2" 50 x 2"		2	1/2" x 2 65 x 2			3" x 3" 80 x 3"			4" x 4" 100 x 4"		R1 x R2 DN1 x R2
	38,2			45,2			60,2	.,_		75,2			95,2		do
	780,4			1157.6			2155.6			3161,4			5452,1		$A_0 = \frac{\pi \cdot d_0^2}{4} - S$
															. 4
															p [bar]
101			110			100			070			10.4			IN bar 0,5
104	176	1930	146	225	2898	188	272	4130	272	335	5201	484	656	6472	1.0
157	266	2758	220	339	4140	284	410 458	5900	410	505	7430	729	987	9247	1,0
176 196	310 353	3242	250	385 430	4628 5117	318 351	458 507	6765 7630	455 500	557	8307 9184	850 972	1050	10141 11035	2,0
234	391	3727 4148	280 308	430	5540	385	565	8490	554	609 705	9184	1087	1113 1202	11320	2,5
273	430	4570	336	521	5964	419	623	9350	609	802	10800	1203	1202	11604	3.0
308	463	4931	375	586	6788	454	686	11315	667	861	12453	1326	1376	13742	3.5
343	497	5292	415	652	7612	490	749	13280	725	920	14107	1449	1460	15880	4.0
364	557	5292	444	709	9134	532	809	14685	786	1024	15610	1567	1586	17756	4,5
385	618	6591	473	766	10656	575	870	16090	847	1128	17113	1686	1712	19632	5,0
406	679	7240	502	823	12178	617	931	17495	908	1232	18616	1804	1838	21508	5.5
427	740	7890	532	880	13700	660	992	18900	969	1336	20120	1923	1964	23384	6.0
452	786	8224	570	919	14687	681	1030	19338	1027	1420	20852	2042	2056	23910	6,5
478	832	8559	609	958	15674	702	1068	19776	1086	1504	21585	2161	2148	24437	7,0
503	878	8893	648	997	16661	723	1106	20214	1144	1588	22317	2280	2240	24963	7,5
529	925	9228	687	1036	17648	744	1145	20653	1203	1672	23050	2400	2332	25490	8.0
564	1014	10958	711	1106	19539	802	1215	22812	1327	1854	24373	2641	2414	26081	9,0
600	1104	12688	735	1176	21430	860	1285	24972	1452	2036	25696	2883	2496	26672	10,0
675	1188	13374	807	1258	22365	923	1388	25311	1576	2213	25968	3121	2714	27464	11,0
750	1272	14060	879	1340	23300	987	1492	25650	1700	2390	26240	3360	2932	28256	12,0
806	1358	14715	957	1430	24070	1056	1586	26525	1822	2577	27305	3601	3144	29108	13,0
862	1445	15370	1036	1520	24840	1125	1680	27400	1944	2765	28370	3843	3356	29960	14,0
957	1530	16310	1104	1615	25684	1190	1836	27915	2076	2948	29033	4086	3604	30950	15,0
1052	1615	17250	1172	1710	26528	1256	1992	28430	2209	3132	29697	4329	3852	31940	16,0
1124	1703	17945	1251	1877	27300	1374	2186	29575	2325	3294	31032	4566	4222	32592	17,0
1196	1792	18640	1330	2045	28072	1493	2380	30720	2442	3456	32368	4803	4592	33244	18,0
1292	1995	20230	1452	2385	29870	1590	2512	32456	2685	3812	33030	5295	5162	34936	20,0
	2232	21968		2556	31296		2952	35200		4156	36616		5750	38120	22,0
	2374	22090		2766	32590		3188	38088		4404	42400		6103	46320	24,0
	2516	22212		2976	33885		3424	40976		4652	48184		6456	54520	25,0

Calculus and measurement according "DIN-A4-109268/69/70"

	FAC	T LIST FOR			Customer:		
	SAF	ETY VALVE	CALCU	LS	Theme:		
	Calcu	lus acording to AD-N	∕lerkblatt A	2 SR,"Safety valve" 1)	Leaf:	Of:	
1	Cons	ultation / Bid / Order					
2	Positi	on N°.					
3	N°. of	units					
4	Regu	ation					
5		Fluid					
6		Calculation temper	rature	°C			
7		State at moment o	f dischar.	I = liquid, s = steam, g = gas	I□ s□ g□	I□ s□ g□	I□ s□ g□
8		Molecular mass		kg/kmol			
9	<u>8</u>	Adiabatic exponen	t æ	Compressibility coe. Z			
10	ē	Density at moment	t of dischar	ge kg/m ³			
11	TIQ	Coefficients	Ψ max	χ			
12	ő	Viscosity	cSt	cPs			
13	SERVICE CONDITIONS	Working pressure	abs.	bar			
14	∑	Set pressure abs.		bar			
15	SEF	External back pres	sure abs.				
			constant	variable bar			
16		Rated pressure at		bar			
17		Discharge		l: kg/h, Nm³/h, l/h	+		
18		capacity	-	1) Kg/h, Nm³/h, l/h			
19		Opening: Full lift /		·	1		
20		Manufacturer type		Togressive	1		
21		Mandiacturer type		Body	1		
22				Seat	1		
23	z	Materials					
24	힏	Materiais		Plug	+		
25	in in			Spring	+		
26	CONSTRUCTION	Manual dia da ana		Joint			
27	Ž	Manual discharge Cover	action	yes / no	+		
$\overline{}$	Щ			Closed / Open			
28 29	VALVE	Bellows		yes / no	+		
\vdash	>	Body with drainage		yes / no	-		
30		Diameter of narrow		do mm Necessary Ao mm²			
31			est		-		
32		flow Ao		Chosen A ₀ mm ²			
33	- 10	Allowed discharge	coefficient				
34	SNC		DNI	Flange mm			
35	CTIC		DN	Thread inch			
36	NE	Input / Output	DNI	Welding (soldering) ends			
37	CONNECTIONS		PN of laint	bar	1		
38			ape or joint	surfaces (DIN-2526)	1		
39	OBSERVA- TIONS	Unit weight		approx. Kg	-		
40	ON,				1		
41	JBS T				1		
42					-		
43	ACCEP- TANCE	Certificate accordi		- 50049 2.2			
44	D Ž	Certificate accordi	ng to DIN	N - 50049 3.1.B			
45							
	Date:						
	Depart	ment:					
	Name:						

Informative brochure, without obligation and subject to our General Sales Conditions.

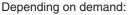
Vacuum breaker safety valve

Model 795

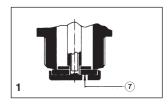
The valve acts as an automatic regulator of pressure drops and prevents the creation of a vacuum inside pressurised installations or vessels.

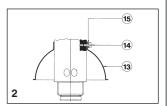
Specifications

- Activated by direct action helicoid spring.
- Simplicity of construction ensuring minimum maintenance.
- Internal body designed to offer favourable flow profile.
- Soft seals giving greater tightness then that required by DIN-3230. Sheet 3, as long as the valve, in non operating conditions, is under equal or greater pressure than atmospheric pressure.
- Great discharge capacity.
- All the valves are supplied sealed at the set depressurising requested, simulating operational conditions, and are vigorously tes-
- All components are numbered, registered and checked. If requested in advance, material, casting, test and efficiency certificates will be enclosed with the valve.

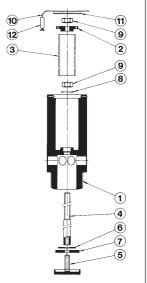


IMPORTANT

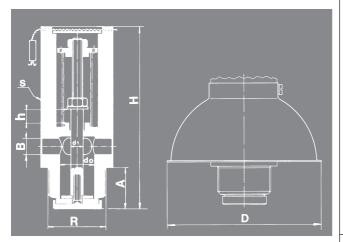

1.- Fluorelastomer (Vitón) seals or Silicone's rubber, achieving leakage levels less than


$$0.3 \times 10^{-3} \frac{Pa \text{ cm}^3}{\text{sec.}}$$

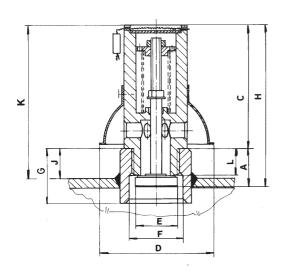
as long as the valve, in non operating conditions, is under equal or greater pressure than atmospheric pressure.



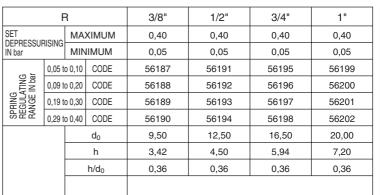
- 1.- Buna-nitryls seals, Butyl, Natural rubber, E.P.D.M., Chlorosulphonate polyethylene (Hypalon), Neoprene, ...etc.
- 2.- The intake deflector prevents the entry of foreign bodies in the valve which will affect later operation. (Specially designed for moving transport).
- 3.- Possibility of manufacture in other types of material, for use in special working conditions (high temperatures, fluids,... etc.).

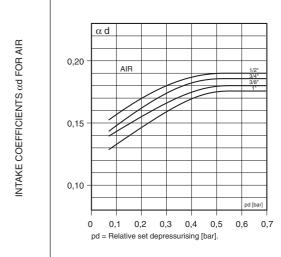

N°. PIECE	PIECE		MATERIAL						
N.TILOL	TILOL	BRA	ASS	STAINLESS STEEL					
1	Body	Brass (DIN-1.76	60 CuZn40Pb2)	S. steel (DIN-1.4401) (AISI-316)					
2	Spring press	Brass (DIN-1.76	60 CuZn40Pb2)	S. steel (DIN-1.4305) (AISI-303)					
3	Spring	S. steel (DIN-1.4	300) (AISI-302)	S. steel (DIN-1.	4300) (AISI-302)				
4	Shaft	S. steel (DIN-1.4	305) (AISI-303)	S. steel (DIN-1.	4305) (AISI-303)				
5	Plug	Brass (DIN-1.76	60 CuZn40Pb2)	S. steel (DIN-1.	4401) (AISI-316)				
6, 8, 15	Washer	S. steel (DIN-1.4	401) (AISI-316)	S. steel (DIN-1.4401) (AISI-316)					
7	Seal	Fluorelastomer (Vitón) (2)	Fluorelastomer (Vitón) (2)					
		Silicone's rubber	(3)	Silicone's rubber (3)					
9	Nut	S. steel (DIN-1.4	401) (AISI-316)	S. steel (DIN-1.4401) (AISI-316)					
10	Sealing wire	Sealing wire		Sealing wire					
11	Charactetistic plate	Aluminium		Aluminium					
12	Seal	Lead		Lead					
13	Deflector	S. steel (DIN-1.4	401) (AISI-316)	S. steel (DIN-1.4401) (AISI-316)					
14	Screw	S. steel (DIN-1.4	401) (AISI-316)	S. steel (DIN-1.4401) (AISI-316)					
	DN		3/8"	to 1"					
	PN	1	6	16					
ODEDATINO	PRESSURE IN bar	16	12	16	12				
OPERATING CONDITIONS	MAXIMUM TEMP. IN °C (1)	120	150	120	150				
CONDITIONS	MINIMUM TEMP. IN °C	-5	50	-50					

⁽¹⁾ For temperatures upper 150°C special seal. For temperatures upper 300°C special seal and spring. (2) Recommended temperature field -30°C to +150°C. Maximum pressure of service 12 bar. (3) Recommended temperature field -50°C to +115°C. Maximum pressure of service 9 bar.

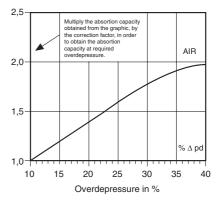

	R	3/8"	1/2"	3/4"	1"				
(CONNECTIONS	Whitworth gas-tight cylindrical male thread ISO 228/1 1978 (DIN-259)							
	d ₀	9,50	12,50	16,50	20,00				
A	$_0 = \frac{\pi}{4} (d_0^2 - d_1^2)$	51,25	89,53	180,64	275,68				
	Н	64	81	90	105				
	А	13,00	16,50	21,00	24,00				
	В	4,25	5,50	8,00	9,50				
	D	40	65	65	65				
	S	24	32	35 (36) •	40 (41) •				
WEIGHT IN Kgs.	BRASS	0,15	0,36	0,46	0,78				
STAINLESS STEEL		0,19	0,34	0,51	0,80				
CODE	BRASS 2002-795.	5381	5021	5341	5101				
00	STAINLESS STEEL 2002-795.	5382	5022	5342	5102				

Stainless steel (DIN-1.4401) (AISI-316).


Example of installation


R	Н	А	С	L	Е	F	D	К	G	J
3/8"	64	13,00	51,00	9	13,90	20,00	40	63	24	12,00
1/2"	81	16,50	64,50	12	17,80	25,50	65	80	32	15,50
3/4"	90	21,00	69,00	15	22,00	34,00	65	95	40	20,00
1"	105	24,00	81,00	18	27,50	42,00	65	106	50	25,00

Calculus according "AD-Merkblatt A2" Air at 0°C and 1,013 bar in [Nm³/h]. INTAKE CAPACITY pd [bar]


INTAKE COEFFICIENTS

35 AIR 30 25 3/4" 20 15 1/2" 10 3/8" 5 od (bar 0,1 0,2 0,3 0,4 0,5 0,6 0,7 pd = Relative set depressurising [bar].

OVERDEPRESSURE FACTORS

Informative brochure, without obligation and subject to our General Sales Conditions.

Disc check valve

Model 170

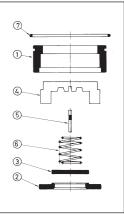
Disc check valve with centering ring for placing between flanges in accordance with DIN, UNE, ANSI, BS, etc. norms. DN-15 to 100 (DN-125 to 200 see catalogue for Model 172).

For liquids, gases and steam.

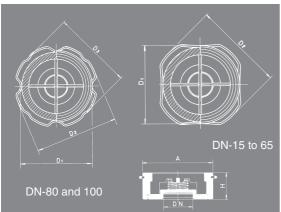
For use in hydraulic, pneumatic, heating and steam systems, chemical and food industries, etc.

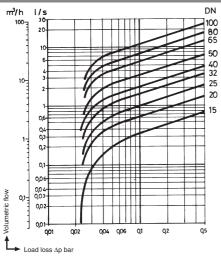
Specifications

- Reduced assembly time in accordance with DIN-3202, part 3, series K4.
- Minimum load loss.
- Avoids ram shock when closing at zero pressure, remaining completely watertight at the time of fluid reversion.
- Highly tightness, exceeding the requirements of DIN-3230. Page 3.
- Easily assembled in any position in accordance with the direction of the fluid flow. Without spring only in vertical ascending direction.
- The valves have one single centering ring for placing between flanges according to DIN and UNE norms (PN-6, 10, 16, 25 and 40), ASA (ANSI) (PSI-150 and 300) and other norms (NF, BS, etc.), with the exception of the DN-100 valve with 3 centering rings duly marked with their corresponding flange norms to aid assembly.


IMPORTANT

Depending on demand:


- Possibility of manufacture in other types of material, for use in special working conditions (high temperatures, fluids, etc.).
- The fastener disc could be fitted up with PTFE joint (Teflón), Silicone's rubber, Fluorelastomer (Vitón), etc.



N.º PIECE	DIECE		MATERIAL											
IN. FIECE	PIECE	BRONZE				CARBON STEEL				STAINLESS STEEL				
1	Body	Bronze (DIN-2.1086.04 GC-CuSn10Zn)				Carb. steel (DIN-1.0580 ST-52)				S. steel (DIN-1.4401)(AISI-316)				
2	Seating	Bronz	e (DIN-2.10	86.04 GC-C	uSn10Zn)	S. st	S. steel (DIN-1.4028)(AISI 420)				S. steel (DIN-1.4401)(AISI-316)			
3	Sealing disc	S. steel (DIN-1.4028)(AISI-420)				S. steel (DIN-1.4028)(AISI-420)			S. steel (DIN-1.4401)(AISI-316)					
4,5	Spring press	S. steel (DIN-1.4401)(AISI-316)				S. steel (DIN-1.4401)(AISI-316)			S. steel (DIN-1.4401)(AISI-316)					
6	Spring	S. steel (DIN-1.4571)(AISI-316Ti)				S. steel (DIN-1.4571)(AISI-316Ti)			S. steel (DIN-1.4571)(AISI-316Ti)					
7	Centering ring	S. steel (DIN-1.4300)(AISI-302)				S. steel (DIN-1.4300)(AISI-302)				S. steel (DIN-1.4300)(AISI-302)				
	DN	15 to 100												
	PN		16			40			40					
	PRESSURE IN bar	16	15	14	13	40	35	28	21	40	34	32	29	
OPERATING CONDITIONS	MAXIMUM TEMP. IN °C	120	180	200	250	120	200	300	400 (1)	120	200	300	400 (1)	
CONDITIONO	MINIMUM TEMP. IN °C		- 6	0		-10				- 60				

						40	50	65	80	100		
	DN		20	25	32					RING I	RING II	RING III
	Н	17	20	22	28	32	40	46	50	60	_	_
	Α	44,5	54,5	64,5	75	84	97,5	117	133	153	_	_
	D ₁	44,5	54,5	64,5	75	84	97,5	117	133	153	_	_
	D ₂	52	65,5	72	83	93,5	110	127	154	168,5	192	178
	D 3		-	_	-	_	_		142,5	162,5	176	173
WEIGHT	BRONZE	0,14	0,24	0,35	0,56	0,82	1,10	2,15	2,90		4,02	
WEIGHT	CARBON STEEL	0,11	0,21	0,30	0,51	0,75	1,05	1,92	2,70		3,90	
IN Kg.	STAINLESS STEEL	0,11	0,21	0,30	0,51	0,75	1,05	1,92	2,70		3,90	
	BRONZE	2003-170.5021	2003-170.5341	2003-170.5101	2003-170.5141	2003-170.5121	2003-170.5201	2003-170.5221	2003-170.5301		2003-170.5401	
CODE	CARBON STEEL	2003-170.8024	2003-170.8344	2003-170.8104	2003-170.8144	2003-170.8124	2003-170.8204	2003-170.8224	2003-170.8304	2003-170.8404		
	STAINLESS STEEL	2003-170.8022	2003-170.8342	2003-170.8102	2003-170.8142	2003-170.8122	2003-170.8202	2003-170.8222	2003-170.8302		2003-170.8402	

		OPE	FLOW COEFFICIENT				
		WITHOUT SPRING	Kv m ³ /h	Cv I/min			
DIRECTION OF FLUID FLOW		A	A	A > Y			
	15	2,51	22,00	20,50	17,00	3,96	15,80
	20	2,38	21,90	20,50	17,10	7,20	32,50
	25	1,96	21,50	20,50	17,50	10,80	49,20
	32	3,70	23,20	20,50	15,80	18,00	80,00
DN	40	4,00	23,50	20,50	15,50	23,00	105,00
	50	4,11	23,60	20,50	15,40	36,00	166,00
	65	4,95	24,40	20,50	14,60	60,00	306,00
	80	5,64	25,10	20,50	13,90	79,00	382,00
	100	6,81	26,30	20,50	12,70	118,00	540,00

Load losses

The adjoining diagram reflects the load loss curves for water at 20°C. Values are based on valves without springs and installed horizontally. In the case of vertical flow, the variations are virtually unimportant.

In order to determine other fluids load losses, calculate the flow of these equivalent to water.

$$Q_A = \sqrt{\frac{Q}{1.000}} \cdot Q$$

 Q_A = Flow equivalent to water in m³/h.

= Fluid density in operating conditions in Kg/m3.

= Fluid flow in operating conditions in m³/h.

Informative brochure, without obligation and subject to our General Sales Conditions.

VYC industrial, sa

Disc check valve

Model 172

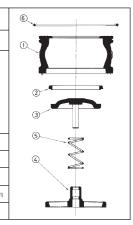
Disc check valve with centering ring for placing between flanges in accordance with DIN, UNE, ANSI, BS, etc. norms

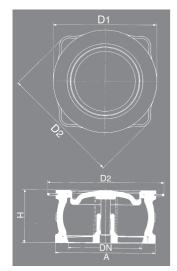
DN-125 to 200 (DN-15 to 100 see catalogue for Model 170).

For liquids, gases and steam.

For use in hydraulic, pneumatic, heating and steam systems, chemical and food industries, etc.

Specifications


- Reduced assembly time in accordance with DIN-3202, part 3, series K4.
- Minimum load loss.
- Avoids ram shock when closing at zero pressure, remaining completely tightness at the time of fluid reversion.
- Highly watertight, exceeding the requirements of DIN-3230. Page 3.
- Easily assembled in any position in accordance with the direction of the fluid flow. Without spring only in vertical ascending direction.
- The valves have one single centering ring for placing between flanges according to DIN and UNE norms (PN-6, 10, 16, 25 and 40), ASA (ANSI) (PSI-150 and 300) and other norms (NF, BS, etc.).


IMPORTANT

Depending on demand:

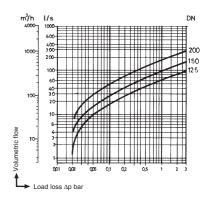
 Possibility of manufacture in other types of material, for use in special working conditions (high temperatures, fluids, etc.).

DIEGE		MATERIAL											
PIECE		BRC	NZE			CAST STEEL				STAINLESS STEEL			
Body Seating	Bronze	(DIN-2.108	6.01 G-CuS	n10Zn)	S. steel	Cast steel (DIN-1.0619 GS-C 25) S. steel (DIN-1.4408)(ASTM A351 CF8M)				S. steel (DIN-1.4408)(ASTM A351 CF8M) S. steel (DIN-1.4408)(ASTM A351 CF8M)			
Lead	Bronze	Bronze (DIN-2.1086.01 G-CuSn10Zn)				S. steel (DIN-1.4408)(ASTM A351 CF8M)				S. steel (DIN-1.4408)(ASTM A351 CF8M)			
Centering ring		*	/ (,	S. steel (DIN-1.4300)(AISI-302)				١ ,	,	٠,	'	
DN		125 to 200											
PN	16				40				40				
PRESSURE IN bar	16	15	14	13	40	35	28	21	40	34	32	29	
MAXIMUM TEMP. IN °C	TEMP. IN °C 120 180 200 250			120	200	300	400 (1)	120	200	300	400 (1)		
MINIMUM TEMP. IN °C		- 6	0		-10				- 60				
	Seating Sealing disc Lead Spring Centering ring DN PN PN PRESSURE IN bar MAXIMUM TEMP. IN °C	Body Bronze Seating Bronze Sealing disc Bronze Lead Bronze Spring S. stee Centering ring S. stee DN PN PRESSURE IN bar 16 MAXIMUM TEMP. IN °C 120	BRC Body Seating Seating Sealing disc Lead Bronze (DIN-2.108 Bronze (DIN-2.108 Bronze (DIN-2.108 Bronze (DIN-2.108 Bronze (DIN-1.457 Centering ring DN PN 1 PRESSURE IN bar MAXIMUM TEMP. IN °C 120 180	BRONZE Body Seating Sealing disc Lead Spring Spring Centering ring Bronze (DIN-2.1086.01 G-CuS Spring S. steel (DIN-1.4571)(AISI-316 Centering ring DN PN 16 PRESSURE IN bar PRAXIMUM TEMP. IN ℃ 120 180 200	BRONZE Body Seating Sealing disc Lead Spring Spring Spring Spring Spring Centering ring Bronze (DIN-2.1086.01 G-CuSn10Zn) Bronze (DIN-2.1086.01 G-CuSn10Zn) Spring S. steel (DIN-1.4571)(AISI-316Ti) S. steel (DIN-1.4300)(AISI-302) DN PN 16 PRESSURE IN bar MAXIMUM TEMP. IN °C 120 180 200 250	BRONZE Body Seating Sealing disc Lead Spring Spring Sealing fing Spring Spring Centering ring Bronze (DIN-2.1086.01 G-CuSn10Zn) Bronze (DIN-2.1086.01 G-CuSn10Zn) Spring S. steel (DIN-1.4571)(AISI-316Ti) S. steel (DIN-1.4571)(AISI-316Ti) S. steel (DIN-1.4300)(AISI-302) S. steel (DIN-1.4571)(AISI-316Ti) S. steel (DIN-1.4300)(AISI-302) S. steel (DIN-1.4300)(AISI-302) DN 16 PRESSURE IN bar 16 15 14 13 40 MAXIMUM TEMP. IN °C 120 180 200 250 120	Body Seating Sealing disc Lead Bronze (DIN-2.1086.01 G-CuSn10Zn) Bronze (DIN-2.1086.01 G-CuSn10Zn) State (DIN-1.4408 Spring Bronze (DIN-2.1086.01 G-CuSn10Zn) State (DIN-1.4408 Bronze (DIN-2.1086.01 G-CuSn10Zn) State (DIN-1.4408 Spring State (DIN-1.4571)(AISI-316Ti) State (DIN-1.4571) State (DIN-1.4571) State (DIN-1.4571) State (DIN-1.4571) State (DIN-1.4300) State (DIN	Body Bronze (DIN-2.1086.01 G-CuSn10Zn) Cast steel (DIN-1.0619 GS-C 25 Seating Bronze (DIN-2.1086.01 G-CuSn10Zn) S. steel (DIN-1.408)(ASTM A35 Sealing disc Bronze (DIN-2.1086.01 G-CuSn10Zn) S. steel (DIN-1.4408)(ASTM A35 Lead Bronze (DIN-2.1086.01 G-CuSn10Zn) S. steel (DIN-1.4408)(ASTM A35 Spring S. steel (DIN-1.4571)(AISI-316Ti) S. steel (DIN-1.4571)(AISI-316Ti) Centering ring S. steel (DIN-1.4300)(AISI-302) S. steel (DIN-1.4300)(AISI-302) DN 125 to 200 PN 16 40 PRESSURE IN bar 16 15 14 13 40 35 28 MAXIMUM TEMP. IN °C 120 180 200 250 120 200 300	PIECE BRONZE CAST STEEL Body Seating Seating Sealing disc Lead Bronze (DIN-2.1086.01 G-CuSn10Zn) Bronze (DIN-2.1086.01 G-CuSn10Zn) Sealing disc Bronze (DIN-2.1086.01 G-CuSn10Zn) Seating disc Bronze (DIN-2.1086.01 G-CuSn10Zn) Seatel (DIN-1.4408)(ASTM A351 CF8M) Spring Seatel (DIN-1.4571)(AISI-316TI) Seatel (DIN-1.4408)(ASTM A351 CF8M) Spring Seatel (DIN-1.4571)(AISI-316TI) Seatel (DIN-1.4571)(AISI-316TI) Seatel (DIN-1.4571)(AISI-316TI) Seatel (DIN-1.4300)(AISI-302) Seatel (DIN-1.4300)(AISI-302) DN 125 to 200 PN 16 40 PRESSURE IN bar PRESSURE IN bar In MAXIMUM TEMP. IN °C 120 180 200 250 120 200 300 400 (III) 120 200 300 400 (III)	Body Seating Sealing disc Lead Bronze (DIN-2.1086.01 G-CuSn10Zn) Cast steel (DIN-1.408)(ASTM A351 CF8M) S. steel (DIN-1.408)(ASTM A351 CF8M) S. steel (DIN-1.4408)(ASTM A351 CF8M) S. steel (DIN-1.4571)(AISI-316TI) S. steel (DIN-1.4571)(AISI-316TI) S. steel (DIN-1.4571)(AISI-316TI) S. steel (DIN-1.4300)(AISI-302) S. steel (DIN-1.4300)(AISI-302)	Body Seating Staling Gisc Lead Bronze (DIN-2.1086.01 G-CuSn10Zn) Cast steel (DIN-1.0619 GS-C 25) S. steel (DIN-1.4408) Sealing disc Bronze (DIN-2.1086.01 G-CuSn10Zn) Sealing disc Lead Bronze (DIN-2.1086.01 G-CuSn10Zn) S. steel (DIN-1.4408)(ASTM A351 CF8M) S. steel (DIN-1.4408) Spring Spring Statel (DIN-1.4108) Spring Statel (DIN-1.4571)(AIS-316Ti) S. steel (DIN-1.4571)(AIS-316Ti) S. steel (DIN-1.4571)(AIS-316Ti) S. steel (DIN-1.4571)(AISI-302) DN 125 to 200 PN 16 40 44 PRESSURE IN bar 16 15 14 13 40 35 28 21 40 34 MAXIMUM TEMP. IN °C 120 180 200 250 120 200 300 400 ° 120 200	Body Seating Staling Gisc Lead Bronze (DIN-2.1086.01 G-CuSn10Zn) Cast steel (DIN-1.0619 GS-C 25) S. steel (DIN-1.4408)(ASTM A35 Staled (DIN-1.44	

	DN	125	150	200
	Н	90	106	140
	A	180	205	262
	Dı	180	205	262
D ₂		205	240	300
WEIGHT	BRONZE	8,13	12,05	21,66
WEIGHT IN Kg.	CAST STEEL	6,90	10,78	19,13
	STAINLESS STEEL	6,93	10,83	19,21
	BRONZE	2003-172.5501	2003-172.5601	2003-172.5801
CODE	CAST STEEL	2003-172.8504	2003-172.8604	2003-172.8804
	STAINLESS STEEL	2003-172.8502	2003-172.8602	2003-172.8802

			OPENING PRESSURE IN mbar										
			WITHOUT WITH SPRING SPRING										
OF I	CTION FLUID LOW		A				ΔP= 1 bar	ΔP= 1 Psi					
1	ALVE FERIAL	BRONZE	C. STEEL S. STEEL	BRONZE	C. STEEL S. STEEL	BRONZE	C. STEEL S. STEEL	BRONZE	C. STEEL S. STEEL		=0,07 bar		
	125	8,40	7,50	28,40	27,50	22,00		11,60	12,50	210,00	700,00		
DN	DN 150 11,70 10,50 31,7		31,70	30,50	24	,00	8,30	9,50	349,00	1250,00			
	200 13,00 11,60 33,00 31,6		31,60	24,00		7,00	8,40	640,00	2340,00				

Load losses

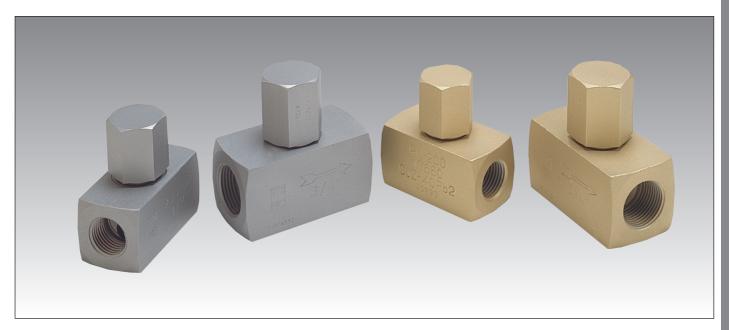

The adjoining diagram reflects the load loss curves for water at 20°C. Values are based on valves without springs and installed horizontally. In the case of vertical flow, the variations are virtually unimportant. In order to determine other fluids load losses, calculate the flow of these equivalent to water.

$$Q_A = \sqrt{\frac{Q}{1.000}} \cdot Q$$

 Q_A = Flow equivalent to water in m³/h.

Q = Fluid density in operating conditions in Kg/m³.

Q = Fluid flow in operating conditions in m^3/h .



Piston check valve

Model 179

For liquids, gases and steam.

For use in hydraulic, pneumatic, heating and steam systems, chemical and food industries, etc.

Specifications

- Spring operated piston closure.
- Reduced pitch.
- Avoids ram shock when closing at zero pressure, remaining completely watertight at the time of fluid reversion.
- Highly tightness, exceeding the requirements of DIN-3230. Page 3.
- Easily assembled in any position in accordance with the direction of the fluid flow. Without spring only for horizontal mounting.
- Fully constructed from laminated bars.

IMPORTANT

Depending on demand:

- Possibility of manufacture in other types of material, for use in special working conditions (high temperatures, fluids, etc.).
- Other connections.
- O-ring gasket closure.

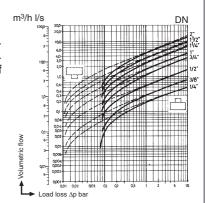
N°. PIECE	PIECE					MATERIA	L					
IN . FIECE	FIECE		BRASS		CARBON STEEL				STAINLESS STEEL			
1	Body	Brass (DIN	I-1.7660 CuZ	C. steel (DIN-1.1191 Ck-45)				S. steel (DIN-1.4401) (AISI-316)				
2	Сар	Brass (DIN	I-1.7660 CuZ	C. steel (DIN-1.1191 Ck-45)				S. steel (DIN-1.4401) (AISI-316)				
3	Piston	S. steel (D	IN-1.4401) (S. stee	S. steel (DIN-1.4401) (AISI-316)				S. steel (DIN-1.4401) (AISI-316)			
4	Spring	S. steel (D	IN-1.4571) (AISI-316Ti)	S. steel (DIN-1.4571) (AISI-316Ti)				S. steel (DIN-1.4571) (AISI-316Ti)			
	DN		1/4" to 2" (GAS, NPT or SW)									
	PN			2	50		250					
	PRESSURE IN bar	200	175	34	250	211	180	167	250	207	170	164
OPERATING	MAXIMUM TEMP. IN °C	120	150	200	120	300	350(1)	400(1)	120	200	350(1)	400(1)
	MINIMUM TEMP. IN °C		- 60		- 10				-	60		

	R		1/4"	3/8"	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"			
			Whitworth	gas-tight cyli	ndrical femal	e thread ISC	228/1 1978	(DIN-259)					
	CONNECTIONS		NPT thread	d ANSI - B 2.	1								
			Socket welding ends SW ANSI - B 16.11										
	Н		34	39	48	55	62	64	82	85			
	L		50	55	65	75	90	95	100	112			
RE	EDUCED PITCH (Ď	6,00	8,00	9,50	11,50	15,00	17,00	21,00	25,00			
WEIGHT	BRASS		0,31	0,47	0,92	0,95	2,21	2,66	3,82	6,43			
WEIGHT IN Kgs.	CARBON STEEL		0,29	0,44	0,78	0,88	2,05	2,47	3,56	6,16			
IIV Nys.	STAINLEES STEEL		0,29	0,44	0,79	0,90	2,07	2,50	3,61	6,24			
	BRASS	GAS	0041	0381	0021	0341	0101	0141	0121	0201			
	2003-179.	NTP	00411	03811	00211	03411	01011	01411	01211				
	CARBON STEEL	GAS	0044	0384	0024	0344	0104	0144	0124	0204			
CODE		NTP	00441	03841	00241	03441	01041	01441	01241	02041			
	2003-179.	SW	00442	03842	00242	03442	01042	01442	01242	02042			
	STAINLESS STEEL	GAS	0042	0382	0022	0342	0102	0142	0122	0202			
		NTP	00421	03821	00221	03421	01021	01421	01221	02021			
	2003-179.	SW	00422	03822	00222	03422	01022	01422	01222	02022			

							FLOV	V COEFFIC	IENT	
		C	PENING PRES	SSURE IN mba	ar					
		WITHOUT SPRING	WITH SPRING	WITHOUT SPRING		WITH SPRING				
OF I	CTION FLUID LOW		4 \(\)	1		1 (1)	(2)	4 Å	(3)	
	1/4"	34,10	49,60	79,10	10,90	0,68	1,98	1,32	_	2,65
	3/8"	35,50	51,00	81,50	10,50	1,10	2,76	2,22	_	4,20
	1/2"	34,80	51,00	80,80	11,20	2,10	6,95	4,53	_	8,90
DN	3/4"	32,80	44,00	76,80	10,20	4,10	11,76	9,06	_	16,70
DIN	1"	34,60	54,10	80,40	11,20	6,20	16,80	13,20	_	25,80
	1 1/4"	34,80	55,40	86,90	11,10	9,80	33,00	21,90	_	40,80
	1 1/2"	35,00	55,90	82,00	11,00	12,90	44,00	21,50	_	52,20
	2"	34,00	56,00	76,10	10,40	19,40	58,20	45,90	_	71,50

⁽¹⁾ For other mounting positions, with or without spring, the flow coefficient varies by $\pm\,2\%$

Load losses


The adjoining diagram reflects the load loss curves for water at 20 $^{\circ}\text{C}.$ Values are based on valves without springs and installed horizontally. In order to determine other fluids load losses, calculate the flow of these equivalent to water.

$$Q_A = \sqrt{\frac{Q}{1.000}} \cdot Q$$

 Q_A = Flow equivalent to water in m³/h.

Q = Fluid density in operating conditions in Kg/m³.

Q = Fluid flow in operating conditions in m^3/h .

⁽²⁾ Flow coefficient for orientation. The volumetric flows which cause loss of pressure to 0,07 bar = 1 Psi are in unstable areas (See diagram of pressure loss).

(3) Opening pressures are greater then 0,007 bar = 1 Psi. The Cv coefficient cannot be determined.

Thermodynamic steam trap

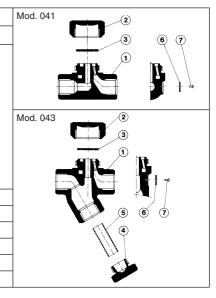
Without strainer
With strainer

Model 041 Model 043

For the extraction of steam condensates.

For use in: steam piping, irons, laundries, tanks and vessels with condensate discharge, multiple plate presses, vulcanizing autoclaves, pressure reduction equipment, etc.

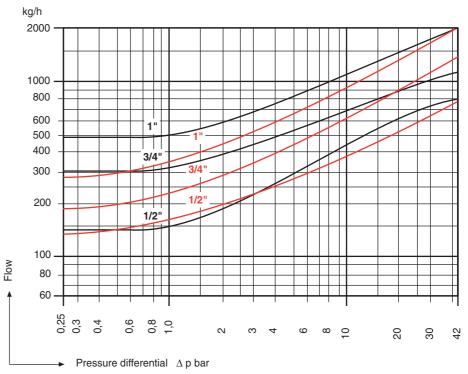
Specifications

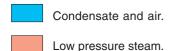

- Materials carefully selected for resistance to wear, extreme temperatures and corrosion. They can be fully recycled.
- Without joints.
- Simplicity of construction. One single moveable piece ensures minimum maintenance.
- Easy installation with possibility to be mounted in any position.
- Compact and robust. Reduced weight and size which facilitates storage.
- Internal design of the body is conceived to provide the capacities required in each case without over sizing.
- Characteristiques plate which enables identification of the working conditions and direction of flow.
- Discontinuous and intermittent discharge.
- Precision opening and closing, avoiding loss of steam.
- Silent, although allows acoustic verification of working.
- Remain unaffected by vibrations, water hammer, reheated steam, corrosive condensate, frosts, etc.
- Protective strainer for the closing surfaces with access cap for cleaning. (Mod. 043).
- Sealing surfaces treated and balanced, making them extremely tightness, even exceeding DIN-3230 requeriments. Page 3.
- All steam traps undergo throrough testing.
- Each component is numbered, registered and inspected. If previously requested, the steam trap will be accompanied by certificates corresponding to materials, batch, test and performance.

Depending on demand:

- $\boldsymbol{-}$ May be manufactured using other materials for specific working conditions (high temperatures, fluids, etc.).
- Other connections.
- Isolation covers to avoid losses through radiation caused mainly by bad weather.

N°.	PIECE	MATERIAL						
PIECE	FILOL	STAINLESS STEEL						
1	Body (Mod. 041)	Stainless steel (DIN-1.4021) (AISI-420)						
1	Body (Mod. 043) Stainless steel (DIN-1.4027) (ASTM A743CA40F)							
2	Cover	Stainless steel (DIN-1.4305) (AISI-303)						
3	Sealing disc	Stainless steel (DIN-1.4021) (AISI-420)						
4	Сар	Stainless steel (DIN-1.4305) (AISI-303)						
5	Strainer	Stainless steel (DIN-1.4301) (AISI-304)						
6	Plate	Aluminium						
7	Rivets	Carbon steel (DIN-1.1141 Ck-15)						
	R	1/2" to 1"(GAS,NPT or SW)						
	MAX. PERMISSIBLE PRESSURE	PMA . 63 bar						
OPERATING	MAX. WORKING PRESSURE	PMS . 42 bar						
CONDITIONS	MIN. WORKING PRESSURE	PmS . 0,25 bar						
CONDITIONS	MAX. PERMISSIBLE TEMPERATURE	TMA . 400°C						
	PERMISSIBLE BACK PRESSURE	Until 80% inlet pressure						

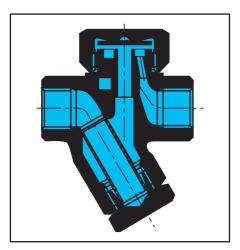


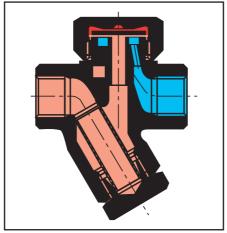


MODEL			041	-		043	
R1		1/2"	3/4"	1"	1/2"	3/4"	1"
CONNECTIO	NS	Whitworth on NPT thread		ndrical fema	le thread IS0	D 228/1 197	8 (DIN-259)
				W ANSI-B16	i.11		
Н		40,0	43,5	51,5	40,5	43,5	51,5
H ₁		55,0 58,5		70,5	55,5	58,5	70,5
h		16,0 19,0		22,5	64,0	67,5	70,0
h ¹		_	_	_	75,0	78,5	81,0
L		70,0	80,0	90,0	78,0	90,0	95,0
WEIGHT IN F	۲g.	0,67	0,82	1,33	0,93	1,12	1,59
CODE	GAS	041.9022	041.9342	041.9102	043.9022	043.9342	043.9102
2108-	NPT	041.90221	041.93421	041.91021	043.90221	043.93421	043.91021
2100	SW(1)	041.90222	041.93422	041.91022	043.90222	043.93422	043.91022
Mod. 041					Mod. 043		
(1							<u></u>
		<u> </u>	-			4	<u> </u>
			<u> </u>				_
				<u>"</u>			\downarrow
<u>دل</u> ا							\uparrow \uparrow
 		——≯l					- -
				-		→	

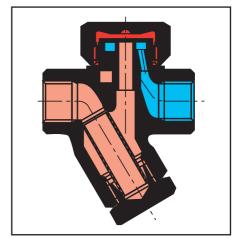
(1) Previous consult with our technical department.

Flow diagram

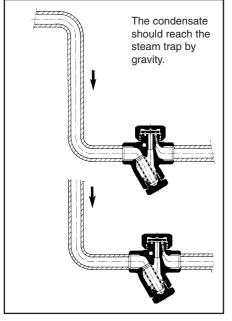



High pressure steam.

Operation

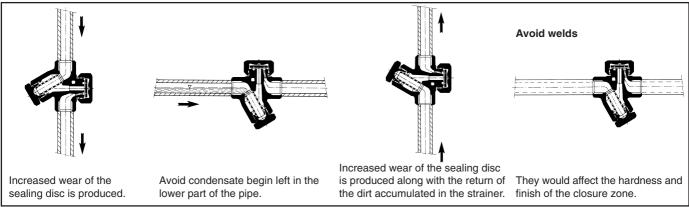

The operation of a thermodynamic steam trap is based on the Bernouilli principle: "In a fluid in motion, the sum of the static and dynamic pressures remains constant at all points, such that an increase in one results in a decrease in the other".

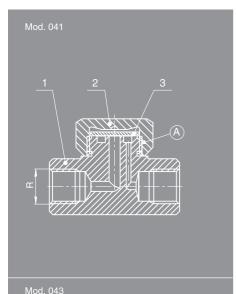
The input pressure acts on the sealing disc which allows the immediate discharge of the condensate and air at the temperature of the steam.

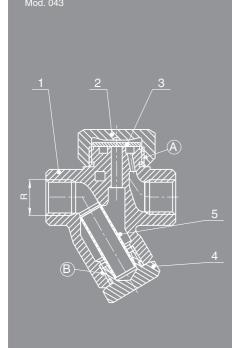


Subsequently the steam enters the steam trap. The high speed produced by the expansion of the steam creates a zone of low pressure in the inverse side of the sealing disc. The flow is deviated to the reverse of the sealing disc and creates a zone of high pressure by recompression. The sealing disc begins to descend.

When the high pressure acts on the whole surface of the sealing disc it exerts a force greater than the input pressure. The steam trap closes. The subsequent presence of condensate on the input causes the cycle to be repeated.


Recommended




Installation

- Verify that the fluid circulates in the direction indicated by the arrow on the characteristics plate.
- Avoid excessive losses of load on the input, and counterpressures on the output by generously sizing the piping. The conductors should have at least the same internal diameter as the steam trap.
- In model 041, it is essential to locate an additional strainer before the steam trap.
- If a sight glass is installed after the steam trap leave about 50 cm between them.
- Each consumption point should have its own steam trap. A common steam trap will give rise to problems.
- The discharge of the steam trap to a consensate tank requires:
- 1 A tank with a larger diameter than the steam trap or the sum of the nominal cross sections of the steam trap connected to it.
- 2 The steam trap that operate at different pressures must discharge to different tanks.
- 3 The input of condensate to the tank must be done through its upper side.

Not recommended

Start-up

- 1- On start up avoid air reaching the steam trap at high speed as it could block it.
- 2- The steam trap will remain open if the compression exceeds 80% of the input pressure.

Assembly and disassembly

- 1- Unscrew cover (2).
- 2- Take out the sealing disc (3).
- 3- Unscrew the cap (4).
- 4- Extract the strainer (5).
- 5- Locate the sealing disc (3), with the slots facing the seating in the body (1).
- 6- Put on the cover (2) after greasing the screw threads (A) and (B) with molybdenum bisulphate or other lubricant which is resistant to high temperatures. Tighten up to the recommended torque.
- 7- Clean the strainer thoroughly (5) and insert into the body (1).
- 8- Screw on the cap (4) greasing the screw threads as in point 6.

TORQUES FOR ROOM TEMPERATURE OF 20°C								
Nº PIECE	PIECE	R	Nm					
2	Cover	1/2" and 3/4"	100					
2	Cover	1"	150					
4	Сар	1/2" to 1"	100					

Maintenance

Before carrying out any maintenance work: Depressurize the steam trap and the input pipe.

The strainer (5) should be cleaned regularly.

The sealing disc (3) and the body seat (1) can be rectified and lapped as long as the quantity of material removed, with respect to the original thickness, does not exceed 0.25 mm.

The sealing disc (3) is rectified and lapped on both sides. The slotted side must be facing the body in order that, through the turbulence generated, a delay in the closure of the steam trap is achieved meaning that the discharge of the condensate is at a temperature close to that of the steam.

Bimetallic steam trap

Thread connections Flange connections

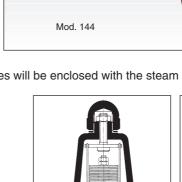
Model 144

For the extraction of steam condensates.

Applicable in: steam piping, heat exchangers,... the chemical and petrochemical industries,... etc.

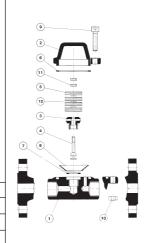
Specifications

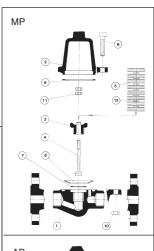
- Materials carefully selected for resistance to wear, extreme temperatures and corrosion.
- Simplicity of construction. A single moveable piece together with a bimetallic strip, highly resistant to corrosion to ensure minimum
- Easy installation, can be mounted in any position, although we recommend horizontal mounting.
- Compact and robust. Reduced weight and size which facilitates
- Internal design of the body is conceived to provide the capacities required in each case without over sizing.
- Great discharge capacity.
- The purger also acts as a deaerator and check valve.
- Precision opening and closing, avoiding loss of steam.
- Inseparable bimetallic strip, made from a single piece, with sides of different expansion mean a high degree of sensitivity of ope-
- Are unaffected by vibrations, water hammer, reheated steam, corrosive condensate, frosts, etc.
- Large surface area filter to protect closure areas.
- Sealing surfaces treated and balanced, making them extremely tightness, even exceeding DIN-3230 requeriments. Page 3.
- All steam traps undergo throrough testing.
- All components are numbered, registered and checked. If requested in advance, material, casting, test and efficiency certificates will be enclosed with the steam trap.

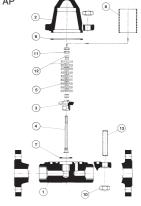

Depending on demand:

1.- Other connections: Thread NPT ANSI-B2.1.

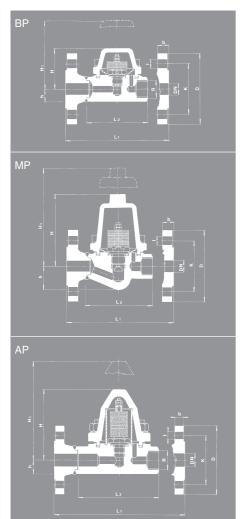
BW or SW ANSI-B 16.11.


ASA ANSI-150, 300 or 600 Lbs. flanges.

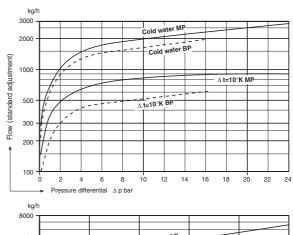

2.- Model BP and MP with external on-line adjustment mechanism.

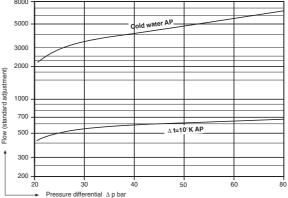


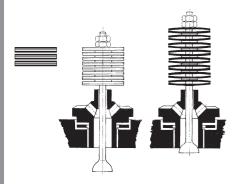
Nº.	PIECE		MATERIAL					
PIECE	FILCE		CARBON STEEL	-				
1	Body	Carbon steel	(DIN-1.0460 C2	2.8) (1)				
2	Cover	Carbon steel (DIN-1.0460 C22.8) (1)						
3	Seating	Stainless steel (DIN-1.4305) (AISI-303)						
4	Plug	Stainless ste	el (DIN-1.4112) (AISI-440 B)				
5	Bimetall	RGR						
6	Joint	Graphite						
7	Joint	Copper						
8	Filter	Stainless steel (DIN-1.4301) (AISI-304)						
9	Screw	Carbon steel (DIN-1.1191 Ck-45)						
10	Nut	Carbon steel	(DIN-1.1141 Ck-	-15)				
11	Nut	Stainless steel (DIN-1.4305) (AISI-303)						
12	Washer	Stainless steel (DIN-1.4305) (AISI-303)						
13	Stud	Carbon steel (DIN-1.1191 Ck-45)						
	TYPE	BP	MP	AP				
	ITPE	LOW PRESSURE	MEDIUM PRESSURE	HIGH PRESSURE				
	R	1/2" and 3/4"	1/2" and 3/4"	1/2" to 1"				
	DN	15 to 25	15 to 25	15 and 25				
	PN	40	40	100				
OPERATING	MAX. PRESSURE IN bar	K. PRESSURE IN bar 17 23						
CONDITIONS MAX. TEMP. IN °C		400	400	450				



Mod. 143




(1) Type AP in Carbon steel (DIN-1.5415 15Mo3).



TYPE	LC	DW PF	RESSL	JRE E	3P	MED	DIUM F	PRES	SURE	MP	HI	GH PF	RESSI	JRE .	AP	
R	1/2"	3/4"	_	_	_	1/2"	3/4"	_	_	_	1/2"	3/4"	1"	_	_	
CONNECTION		Whitworth gas-tight cylindrical female thread ISO 22									28/1 1978 (DIN-259)					
DN	_	_	15	20	25	_	_	15	20	25	_	_	_	15	25	
CONNECTION			Fla	ange P	N-40	DIN-2	544/25	45			Flang	e PN-1	110 00	N-2547	7/2548	
Н	56	56	56	56	56	115	115	115	115	115	120	120	120	120	120	
H ₁	91	91	91	91	91	165	165	165	165	165	210	210	210	210	210	
h	24,0	24,0	_	_	_	26,0	26,0	_	_	_	25,0	25,0	25,0	_	_	
L ₁	_	_	150	150	160	_	_	150	150	160	_	_	_	230	230	
L ₂	90	90	_	_	_	110	110	_	_	_	160	160	160	_	_	
D	_	_	95	105	115	_	_	95	105	115	_	_	_	105	140	
K	_	_	65	75	85	_	_	65	75	85	_	_	_	75	100	
1	_	_	14	14	14	_	_	14	14	14	_	_	_	14	18	
b	_	_	16	18	18	_	_	16	18	18	_	_	_	20	24	
NºDRILLS	_	_	4	4	4	_	_	4	4	4	_	_	_	4	4	
WEIGHT IN Kgs.	1,60	1,50	3,00	3,50	4,00	2,60	2,50	4,00	4,50	5,00	6,00	6,00	6,00	9,00	11,00	
CODE 2108 –	143.8024	143.8344	144.8024	144.8344	144.8104	143.80241	143.83441	144.80241	144.83441	144.81041	143.0024	143.0344	143.0104	144.0024	144.0104	

Flow diagram

Operation

The operating principle of the bimetallic steam trap is based on the combination in a column of double sided bimetallic discs made up of one single bimetallic strip, where each face has a different coefficient of expansion.

The bimetallic strips are piled up in pairs, with the sides having the same coefficient of expansion (side without the marking) placed against each other.

In the presence of cold water the bimetallic strips remain flat. As the temperature increases the discs change shape, becoming convex, and displacing the plug against the seating. The maximum convexity, which coincides with a fully tight shut off is obtained just at the point when the condensate turns to steam.

It is important to remember that the distance between the plug and the seating when cold is that which determines the flow when in service.

Direct action pressure reducing valve

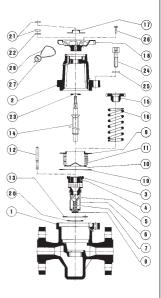
Thread connection Flange connection

Model 513 Model 514

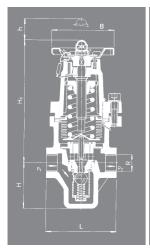
For steam and gases. (For liquids, consult our technical department). Suitable for application in; ironing machines, laundries and dry cleaners', cooking vats, textile machinery, drying cylinders, autoclaves, steam ovens, distilleries, heat exchangers, the food industry, chemical laboratories, etc.

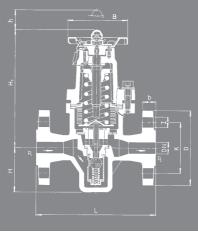
Specifications

- Materials carefully selected for resistance to wear, extreme temperatures and corrosion. They can be fully recycled, and use a single, non-metallic, asbestos-free joint.
- Simplicity of design, ensuring minimum maintenance requirements.
- Easy installation; may be assembled in any position, even upside down.
- Moderate weight and size.
- Interior design conceived for maximum capacity and performance for size
- Easy to adjust. The valves are supplied unregulated, but with the corresponding spring, duly identified, for the required pressure reduction.
- Rating plate which identifies the regulation field.
- Three springs, easily interchangeable and identified by colour and code.
- Anchoring system immune to vibrations; may be sealed to prevent manipulation.
- Selft-centring lock, independent of axle, designed to guarantee absolue precision of regulation at the most demanding points.
- Protective filter for the locking surfaces.
- High degree of airtightness of the lock at zero consumption, exceeding the requirements of DIN-3230. Page 3.
- Stainless steel bellows welded to the plasma. Airtightness tested with helium, ensuring absolute reliability and long life.
- All valves undergo throrough testing.
- Each component is numbered, registered and inspected. If previously requested, the valve will be accompanied by certificates corresponding to materials, batch, tests and performance.


IMPORTANT

Depending on demand:


- May be manufactured using other materials for specific working conditions (high temperatures, fluids, etc.).
- Other connections.
- Degreased and completely free of oils and greases.


N°.	I DIFCE		MATERIAL					
PIECE		PIECE	NODULAR IRON	CARBON STEEL	STAINLESS STEEL			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	2 Cover 3 Seating 4 Guide 5 Lock 6 Filter 7 Auxiliary spring 8 Cap 9 Bellows ring 10 Bellows disc 11 Bellows 12 Axle 13 Separator disc 14 Regulation screw 15 Spring press 16 Spring 17 Rating plate 18 Handwheel 19 Body joint 19 Seating joint 10 Seating joint 11 Seating joint 12 Nut		Nodular iron (DIN-0.7043 GGG-40.3) Aluminium (DIN-3.2581.01 G-AISi12) Stainless steel (DIN-1.4057) (AISI-431) Graphite PTFE (Teflón) Stainless steel (DIN-1.4034) Stainless steel (DIN-1.4044) (AISI-316L) Stainless steel (DIN-1.4404) (AISI-316L) Stainless steel (DIN-1.4404) (AISI-316L) Stainless steel (DIN-1.4404) (AISI-316L) Stainless steel (DIN-1.4404) (AISI-316L) Stainless steel (DIN-1.47571) (AISI-316TI) Stainless steel (DIN-1.47571) (AISI-316TI) Stainless steel (DIN-1.4404) (AISI-316L) Stainless steel (DIN-1.4404) (AISI-316L) Stainless steel (DIN-1.4404) (AISI-316L) Carbon steel (DIN-1.1111 Ck-45) Carbon steel (DIN-1.1141 Ck-15) Chrome-silicon steel (DIN-1.7102 54SiCr6) Stainless steel (DIN-1.4301) (AISI-304) Aluminium (DIN-3.2581.01 G-AISi12) Graphite Stainless steel (DIN-1.1141 Ck-15) Carbon steel (DIN-1.1141 Ck-15) Carbon steel (DIN-1.1141 Ck-15)	Carbon steel (DIN-1.0619 GS-C 25) Aluminium (DIN-3.2581.01 G-AISi12) Stainless steel (DIN-1.4057) (AISI-431) Graphite PTFE (Telfon) Stainless steel (DIN-1.4034) Stainless steel (DIN-1.4040) (AISI-316L) Stainless steel (DIN-1.4404) (AISI-316L) Stainless steel (DIN-1.4404) (AISI-316L) Stainless steel (DIN-1.4404) (AISI-316L) Stainless steel (DIN-1.4404) (AISI-316L) Stainless steel (DIN-1.4571) (AISI-316L) Stainless steel (DIN-1.4404) (AISI-316L) Stainless steel (DIN-1.4404) (AISI-316L) Stainless steel (DIN-1.4404) (AISI-316L) Carbon steel (DIN-1.1141 Ck-15) Chrome-silicon steel (DIN-1.1141 Ck-15) Chrome-silicon steel (DIN-1.401) (AISI-304) Aluminium (DIN-3.2581.01 G-AISi12) Graphite Stainless steel (DIN-1.1141 Ck-15) Carbon steel (DIN-1.1141 Ck-15) Carbon steel (DIN-1.1141 Ck-15) Carbon steel (DIN-1.1141 Ck-15)	Stainless steel (DIN-1.4408) (AISI-316) Aluminium (DIN-3.2581.01 G-AISi12) Stainless steel (DIN-1.4057) (AISI-431) Graphite PTFE (Teflón) Stainless steel (DIN-1.4034) Stainless steel (DIN-1.4034) Stainless steel (DIN-1.4404) (AISI-316L) Stainless steel (DIN-1.4571) (AISI-316T) Stainless steel (DIN-1.4404) (AISI-316L) Stainless steel (DIN-1.4404) (AISI-316L) Stainless steel (DIN-1.4404) (AISI-316L) Stainless steel (DIN-1.401) (AISI-316L) Stainless steel (DIN-1.401) (AISI-316L) Stainless steel (DIN-1.401) (AISI-316L) Carbon steel (DIN-1.4301) (AISI-304) Aluminium (DIN-3.2581.01 G-AISi12) Graphite Stainless steel (DIN-1.4404) (AISI-316L) Carbon steel (DIN-1.1141 Ck-15) Carbon steel (DIN-1.1141 Ck-15) Carbon steel (DIN-1.1141 Ck-15)			
24 25 26 27 28	Screw Washer Anchoring bolt Seal		er		Stainless steel (DIN-1.4401) (AISI-316) Stainless steel (DIN-1.4401) (AISI-316) Carbon steel (DIN-1.1141 Ck-15) Lead Sealing wire			
	ı	R		1/2" to 1"				
		DN		15 to 25				
		PN	25	40	40			
		PRESSURE IN bar	17	17	17			
	RATING	MAX. TEMP. IN °C	210	230	230			
OONL	CONDITIONS MIN. TEMP. IN °C		-10	-10	-60			

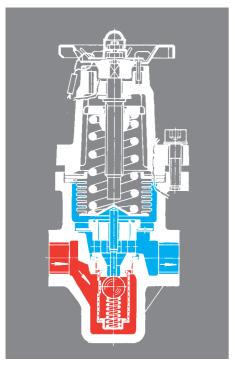

	MODEL					513	3				514								
	R DN		1/2			3/4			1"			15			20			25	
(CONNECTIONS	Wh IS0	nitwo D 228	rth g: B/1 1:	as-tig 978 (ht cy DIN-	/lindr 259)	ical fe	emal	е			P P	N-25 N-40	DIN DIN	-254 -254	4 5		
	Н		57			57			57			57			57			57	
	H ₁		150)		150)		150)		150)		150)		150)
	h		25			25			25			25			25			25	
	L		85			95			105	5		150)		150)	160		
	В		75		75 75				75		75				75				
	D										95				105	5		115	
	K		_			_			_			65		75				85	
												14			14			14	
												16			18			18	
	DRILLS N°.											4			4			4	
Kgs.	NODULAR IRON		1,98	8		2,0	5	:	2,2	9	;	3,60)	;	3,6	5		4,73	В
EIGHT IN	CARBON STEEL	:	2,08	8	:	2,1	5		2,4	4	3,85 3,95					5	5,05		5
WEIG	STAINLESS STEEL	:	2,1	3		2,2	5		2,5	5	;	3,9	5		4,08	8	5,20		Ď
	PRING REGULATING RANGE IN bar EDUCED PRESSURE)	0,14 a 1,70	1,40 a 4,00	3,50 a 8,60	0,14 a 1,70	1,40 a 4,00	3,50 a 8,60	0,14 a 1,70	1,40 a 4,00	3,50 a 8,60	0,14 a 1,70	1,40 a 4,00	3,50 a 8,60	0,14 a 1,70	1,40 a 4,00	3,50 a 8,60	0,14 a 1,70	1,40 a 4,00	3,50 a 8,60
	NODULAR IRON 2001-	513.60261	513.60262	513.60263	513.63461	513.63462	513.63463	513.61061	513.61062	513.61063	514.60261	514.60262	514.60263	514.63461	514.63462	514.63463	514.61061	514.61062	514.61063
CODE	CARBON STEEL 2001-		513.80242	513.80243	513.83441	513.83442	513.83443	513.81041	513.81042	513.81043	514.80241	514.80242	514.80243	514.83441	514.83442	514.83443	514.81041	514.81042	514.81043
	STAINLESS STEEL 2001-		513.80222	513.80223	513.83421	513.83422	513.83423	513.81021	513.81022	513.81023	514.80221	514.80222	514.80223	514.83421	514.83422	514.83423	514.81021	514.81022	514.81023

	TABLE OF PRESSURES, FLOW COEFFICIENTS AND REGULATION FIELDS											
	R 1/2" 3/4" 1											
		DN	15	20	25							
MAXII	MUM INPUT PR	ESSURE IN bar (P1 MAX.)		17								
MAXI	MUM REDUCTI	ON DIFFERENTIAL IN bar		P1:10								
MINIMU	0,14											
FL	OW COEFFICIE	1,50	2,50	3,00								
	0,14 to 1,70	CODE	56494									
ATING ar SURE)	0,14101,70	IDENTIFICATION COLOUR		White								
EGULAT E IN bar PRESSI	1,40 to 4,00	CODE	56495									
SPRING RE RANGE (REDUCED)	1,40 to 4,00	IDENTIFICATION COLOUR	Pink									
SPF (RED	2 E0 to 9 60	CODE	56496									
	3,50 to 8,60	IDENTIFICATION COLOUR	Red									

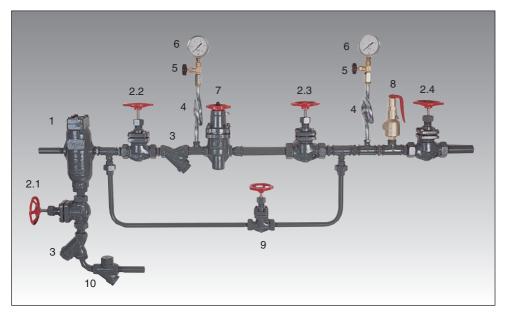
FLOWS										
1	R	1/	2"	3/	/4"	1	"			
С	N	1	5	2	20	2				
			rated stear							
	SURE bar	II - Air at	0°C and 1	I,013 b̄ar iı	n [Nm³/h]. ical depart	ment.				
INPUT P1	REDUCED P2	I	II	I	II	I	II			
	0,2	6	8		9	10	14			
2	1	26	35	32	39	42	58			
	1,5	30	40	37	48 18	52	71			
	0,3	12 30	15 33	15 37	49	21 54	27 74			
3	1,5	42	54	52	67	73	101			
	2	50	67	64	82	89	123			
	2,5	66	75	70	93	99	138			
	0,4	19	25	24	30	32	43			
	1	38	49	45	61	69	89			
4	1,5	50	67	62	82	87	121			
	2	62	82	77	100 114	108 122	150 172			
	2,5	70 75	91 98	87 92	121	122	189			
	0,5	42	57	52	69	79	98			
	2	68	90	85	113	120	168			
5	3	88	115	108	143	153	213			
	4	96	125	120	155	168	232			
	0,6	46	60	57	74	82	108			
	2	74	98	92	123	132	181			
6	3 4	98 110	126 142	120 136	159 180	171 192	236 265			
	5	106	139	130	175	188	260			
	0,7	50	67	63	84	89	119			
	2	81	106	102	133	142	194			
7	3	104	135	131	171	182	254			
	4	118	154	148	194	206	288			
	6	114	150	142	188	201	278			
	0,8	54	71 113	67 108	88 141	94 152	129 213			
8	3	87 112	146	138	181	196	272			
O	4	129	169	162	221	227	314			
	6	138	180	173	253	245	338			
	0,9	48	67	63	82	92	125			
	2	90	116	120	147	157	216			
9	3	116	151	145	189	204	280			
	4	136	177	170	221	239 264	333 363			
	5 7	150 155	195 199	187 194	244 250	275	374			
	1	58	77	73	95	105	142			
	2	92	122	121	151	164	227			
10	3	120	158	150	196	214	293			
10	4	142	186	178	233	250	347			
	6	170	208	212	277	297	412			
	8 1,1	178 66	229 88	220 82	286 108	307 121	426 160			
	2	96	127	123	159	171	240			
	3	130	170	162	212	227	316			
11	4	158	205	195	255	276	380			
	6	196	221	242	317	339	473			
	8	214	278	266	347	374	518			
	8,6 1,2	218 73	284 99	271 95	355 126	383 132	530 186			
	2	108	135	128	167	178	249			
	3	138	177	170	221	240	332			
12	4	165	214	205	268	290	398			
	6	206	268	255	332	360	492			
	8	230	300	285	374 380	404 414	578 579			
	8,6	233 85	305 111	289 106	380 140	414 148	579 208			
	1,3 2	110	141	134	175	187	260			
	3	141	185	175	231	249	343			
13	4	170	224	213	278	298	412			
	6	217	283	281	350	382	527			
	8	246	325	307	403	435	604			
	8,6	251	356 117	314	412	445 161	615 220			
	1,5 2	92 112	117 142	113 138	148 179	196	266			
	3	144	187	177	236	252	348			
15	4	172	229	208	285	308	420			
	6	202	284	290	365	390	544			
	8	222	336	318	419	448	626			
	8,6	240	343	355	428	459	639			
	1,7	104	128	123	160	173	239			
	2	116	145	141	183 241	196 258	270 355			
17	3	147 174	191 233	181 221	241 328	314	429			
17	6	206	300	296	373	404	556			
	8	229	349	340	434	469	650			
	8,6	252	359	344	444	478	673			

Area of influence of input pressure. (P₁)

Area of influence of reduced pressure. (P₂)

Operation

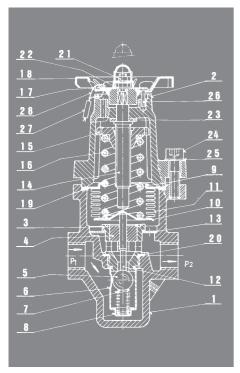
The operation of the reducing valve is based on the principle of direct action. The force exerted by the spring displaces the axle and maintains the locking ball open. The fluid exerts an opposite force on the hood as it passes, which tends to reduce the section of passage of the fluid through the seating. The action of the spring and reaction of the pressure on the bellows balance each other, and the reduced pressure is maintained constant.

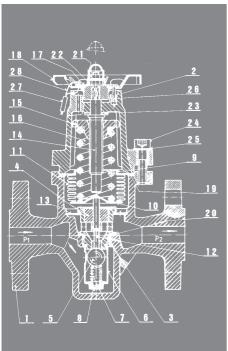

The fluctuations in consumption affect the reduced pressure. The bellows detects these variations via the balance hole, provoking a change in the passage of fluid as a function of the established reduced pressure.

In working conditions with zero consumption, the valve remains closed and completely airtight when there is a slight increase in reduced pressure.

Installation

- Allways install the valve in a section of horizontal tubing, as close as possible to the point of consumption.
- The valve may be assembled in any position, even upside-down.
- Verify that the fluid flows in the direction indicated by the arrow on the body of the valve.
- The input and output tubes must be of the correct size and properly supported, to avoid any fall in pressure or tension.
- The output tubing should ideally have a greater diameter than the input tubing, to avoid excessive velocity of flow of the liquid.
- In accordance with the requirements of "Regulations for pressure devices ITC-MIE-AP 2 5.8", the pressure reduction facilities in steam circuits will be supplied with:
- 1- A pressure gauge with syphon tube and three end cock, in accordance with article 11 of the MIE-AP 1 instructions, "Boilers", located before and after the reduction valve.
- 2- A safety valve following the reduction valve, capable of evacuating the maximum flow of steam, which permits flow at the level regulated and adjusted to the maximum reduced pressure of service plus a maximum of 10%.


Example of installation for steam



- Condensate separator.
- 2 Interruption valve.
- 3 Filter.
- 4 Syphon tube.
- 5 Pressure gauge cock.
- 6 Pressure gauge.
- 7 Pressure reducing valve.
- 8 Safety valve.
- Interruption valve with adjusting cone.
- 10 Condensate purger.

IMPORTANT

- The distance between the pressure reducing valve 7 and the interruption valves 2.2 and 2.3 must be 8 ÷ 10 times the diameter of the tube.
- It is advisable to install the separator 11 and the condensate purger 10 using wet steam with dragging.
- We recommend that the reduction device be equipped with a by-pass and interruption valve with an adjusting cone [9].

Start-up and adjustment of the reduced pressure

- 1- Before start-up, the tubes and the inside of the valve itself should be cleaned, eliminating any residues or impurities, particularly from the locking surfaces.
- 2- Check the rating plate (17) to verify that the regulation field for the reduced pressure is appropriate and that the spring (16) corresponds to the same range.
- 3- Remove the nut (21), the rating plate (17) and the anchoring bolt (26).
- 4- With the input interruption valve fully open and the output interruption valve closed, turn the handwheel (18) gradually from left to right to increase the reduced pressure, or from right to left to decrease it, until the required reduced pressure is obtained at zero consumption.
- 5- Slowly open the output interruption valve.
- 6- Readjust the required reduced pressure in consumption conditions.
- 7- Put the anchoring bolt (26) and the rating (17) in place, and fix with the nut (21).
- 8- Seal the valve to prevent further adjustments, using the sealing wire (28) and the seal (27).
- 9- We recommend that the input pressure P₁ and the reduced pressure P₂ be recorded in the corresponding space of the rating plate (17).

Assembly and disassembly

- 1- Unseal the valve by cutting the wire (28).
- 2- Remove the nut (21), the rating plate (17) and the anchoring bolt (26).
- 3- Turn the handwheel (18) from right to left until you notice the spring (16) loosening.
- 4- Remove the screws (24) along with the washers (25).
- 5- Separate the cover (2) from the body (1), and you will have access to all the internal components. This enables simple maintenance and replacement of the spring (16), the bellows components (9) (10) (11) and the seating components (3) (4) (5) (6) (7) (8).
- 6- If the seating has been disassembled, replace the joint (20) with a new one. Put a new body joint in place (19).
- 7- Put the axle (12) in the guide hole (4) and check that it can move freely and is perpendicular to the bellows disc (10) when the bellows components (9) (10) (11) are put in place.
- 8- Select the spring (16) corresponding to the reduced pressure.
- 9- Put the cover (2) on the body (1) and the screws (24) with the washers (25), and screw them in.
- 10- Finally, proceed as described in "Start-up and adjustment of the reduced pressure".

Maintenance

Correct installation with interruption valves at the input and output points facilitates maintenance.

The filter (6) should be cleaned regularly.

When assembling the valve, replace the seating joint (20) and body joint (19) with new ones.

Steam-water mixing valve

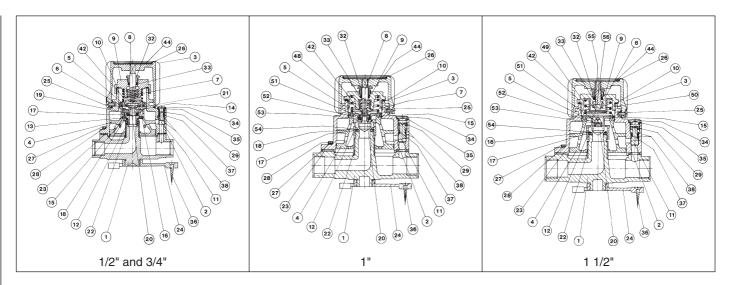
Model 253

In installations with steam, the steam can be mixed with cold water to obtain instant hot water in the most economical way. Can be used in packaging plants, dairies, detergent plants, slaughterhouses, meat processing plants, hospitals,... etc. For cleaning floors, vehicles, toilets, tanks, filters,... etc. In the manufacture of food, chemical, paper and tannery products,... etc.

Specifications

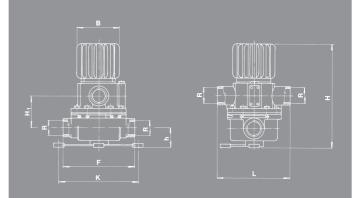
- Efficient, safe, simple installation and moderate cost.
- Water temperature easily adjusted to suit the needs of the consumer.
- Installation does not require pressure reducing valves.
- In certain applications they make an ideal and economical substitute for heat exchangers.
- Equipped with a safety device which prevents the input of steam until there is water flow through the mixer.
- Design aimed at eliminating noises and vibrations which are characteristics of the mixing of steam with cold water.
- Materials carefully selected for resistance to wear, extreme temperatures and corrosion.
- Simplicity of design, ensuring minimum maintenance requirements.
- Moderate weight and size.
- Easy to connect.
- Three single springs witch are easily interchangeable and identified by their colour and number of notches.
- All valves undergo throrough testing.
- Each component is numbered, registered and inspected. If previously requested, the valve will be accompanied by certificates corresponding to materials, batch, tests and performance.

IMPORTANT


Depending on demand:

- Valves made entirely from Stainless steel.
- Valves coated internally and externally with PTFE (Teflon).
- Thermostatic valves.
- Chrome or nickel finish.
- Venturi type doser for mixing detergent with hot water.
- Support for coiling the hose.
- Automatic hose coiler.
- Pistol with lance for spraying hot water.

N°.		PIECE	MATERIAL						
PIECE		FIECE	BRONZE						
1		Body	Bronze (DIN-2.1096.01 G-Cu Sn 5 Zn Pb)						
2		Cover	Bronze (DIN-2.1096.01 G-Cu Sn 5 Zn Pb)						
3		Control	Plastic ABS (1)						
4		Piston	Bronze (DIN-2.1096.01 G-Cu Sn 5 Zn Pb)						
5		Upper buffer	Bronze (DIN-2.1096.01 G-Cu Sn 5 Zn Pb)						
6		Lower buffer	Stainless steel (DIN-1.4401) (AISI-316)						
7		Fixed spring	Stainless steel (DIN-1.4300) (AISI-30						
8		Axis	Bronze (DIN-2.0530.10 Cu Zn 39 Sn F35)						
9		Spring press	Bronze (DIN-2.1096.01 G-Cu Sn 5 Zn Pb)						
10/23		Joint	Klingerit cardboard/Fluorelastomer (Vitón)						
11		Valve	Brass (DIN-2.0401.08 Cu Zn 39 Pb 3p)						
12		Lead	Stainless steel (DIN-1.4401) (AISI-316)						
13		Ring	Brass (DIN-2.0401.08 Cu Zn 39 Pb 3p)						
14		Plate	Stainless steel (DIN-1.4401) (AISI-316)						
15, 25, 27, 3	6, 41	Screw	Stainless steel (DIN-1.4401) (AISI-316)						
16 17		Rivets	Stainless steel (DIN-1.4401) (AISI-316) PTFE (Teflon)						
18, 40		Seating Washer	Copper						
19, 49, 52		Washer	Brass (DIN-2.0401.08 Cu Zn 39 Pb 3p)						
20		Valve	Stainless steel (DIN-1.4401) (AISI-316)						
21		Spring press	Stainless steel (DIN-1.4401) (AISI-310) Stainless steel (DIN-1.4300) (AISI-302)						
22		Shirt	Bronze (DIN-2.1096.03 GC-Rq-5)						
24		Bracket	Polimer + FV (2)						
26		Clip	Stainless steel (DIN-1.4401) (AISI-316)						
28, 38		Washer	Stainless steel (DIN-1.4401) (AISI-316)						
29		Adjusting screw	Brass (DIN-2.0401.08 Cu Zn 39 Pb 3p)						
30		Dowel	Stainless steel (DIN-1.4401) (AISI-316)						
31		Cap	Bronze (DIN-2.1096.01 G-Cu Sn 5 Zn						
32		Gland	Brass (DIN-2.0401.08 Cu Zn 39 Pb 3p)						
33, 37		Seal	Graphite						
34		Cap	Brass (DIN-2.0401.08 Cu Zn 39 Pb 3p)						
35		Joint	PTFE (Teflon)						
39		Gudgeon	Stainless steel (DIN-1.4401) (AISI-316)						
42		Variable spring	Stainless steel (DIN-1.4300) (AISI-302)						
43, 44, 45, 4	6, 47	Plate	Aluminium						
48		Lead	Brass (DIN-2.0401.08 Cu Zn 39 Pb 3p)						
50		Ball	Stainless steel (DIN-1.4401) (AISI-316)						
51		Nut	Brass (DIN-2.0401.08 Cu Zn 39 Pb 3p)						
53, 54		Washer	Bronze - Berilium						
55	Lower plate		Stainless steel (DIN-1.4401) (AISI-316)						
56		Upper plate	Stainless steel (DIN-1.4401) (AISI-316)						
		R	1/2", 3/4", 1" and 1 1/2"						
		PN	16						
OPERATING	_	STEAM PRESSURE IN bar	· · · · · · · · · · · · · · · · · · ·						
CONDITIONS	_	TEAM PRESSURE IN bar	0,35						
	IMAX.	ΓEMP. IN °C	187						


 ⁽¹⁾ The 1 1/2" control is supplied in Aluminium (DIN-3.2581.01 G-Al Si 12).
 (2) R- 1 1/2" is supplied in Bronze (DIN-2.1096.01 G-Cu Sn 5 Zn Pb).

R	VARIABLE SPRING REGULATION RANGE IN bar (STEAM PRESSURE)	IDENTIFICATION COLOUR	Nº NOTCHES	MINIMUM HOT WATER FLOW FOR OPEN STEAM VALVE IN I/min.
	0,35 a 3,50	Black	1	2,30
1/2"	3,50 a 7,00	Green	2	2,70
	7,00 a 10,80	Yellow	3	4,50
	0,35 a 3,50	White	1	7,00
3/4"	3,50 a 7,00	Blue	2	7,00
	7,00 a 10,80	Red	3	8,00
	0,35 a 3,50	White	1	27,00
1"	3,50 a 7,00	Blue	2	32,00
	7,00 a 10,80	Red	3	36,00
	0,35 a 3,50	White	1	55,00
1 1/2"	3,50 a 7,00	Blue	2	55,00
	7,00 a 10,80	Red	3	55,00

NOTE: The mixing valve is supplied mounted with a variable spring ranging from 3,50 to 7,00 bar
and two extra springs are included in case it is required to work at other steam pressures.
To change the springs, unscrew the screw (25) remove the control (3) and the spring press
(9), and the variable spring (42) will be accessible. To reassemble carry out the reverse
sequence.

CONNECTIONS	Whitworth gas	tight cylindrical fe	male ISO 228/1 1	978 (DIN-259)
Н	197	197	216	286
H ₁	57	60	70	98
h	32	40	44	60
L	140	151	173	213
F	144	152	201	266
В	108	108	121	143
K	134	159	134	200
DRILLS N°:	3	3	3	3
WEIGHT IN Kgs.	6,4	9,4	11,2	26,0
CODE 2106 – 253.	5021	5341	5101	5121

Flows

Data required to determine the internal diameter of the valve:

- Temperature of consumer hot water:
- Flow of consumer hot water:______
- Pressure available at the cold water input:_____
- Pressure available at the steam input:

Calculation process

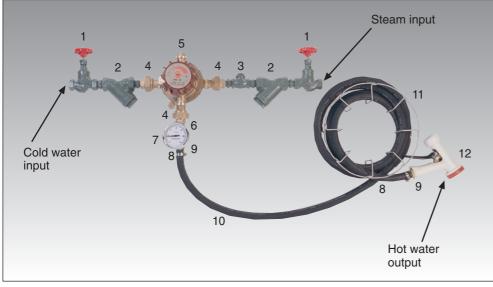
- 1- Start with table for 1/2".
- 2– For the available cold water input pressure, work out the flow of cold water.
- 3- For the available steam input pressure, work out the hot water flow at the consumer temperature.
- 4– From the values obtained in steps 2 and 3 choose the smaller value, and compare if this is sufficient to cover the requirements for consumer hot water. If not repeat the process using the 3/4" table and so on up to the 1 1/2" table.

	FLOW N. 1/2														
COL	_D WA	TER	STEAM					НОТ	WATE	ER IN I	/min.				
품	IN I/	OW min.	H.				SER	VICE	TEMP	ERAT	URE I	N °C			
PRESSURE IN bar	OPEN VALVE	CLOSED	PRESSU IN bar	38	43	49	54	60	66	71	77	82	88	93	99
0,35	13	7	0,35	13	10	8	7	6	6	5	5	4	4	4	3
0,70	19	9	0,70	21	16	13	11	10	9	8	7	7	6	6	5
1,40	29	11	1,40	32	23	20	17	15	13	12	11	10	9	9	8
2,10	36	13	2,10	38		23	20	18	16	14	13	12	11	10	10
2,80	42	14	2,80	49	35	30	26	23	20	19	17	16	15	13	13
3,50	47	15	3,50	62	45	38	33	29	26	24	21	20	18	17	16
4,20	52	16	4,20	67	48	41	35	31	28	26	23	21	20	18	17
4,90	56	17	4,90	72	52	44	38	34	30	27	25	23	21	20	19
5,60	60	18	5,60	77	56	47	41	36	32	29	27	25	23	21	20
6,30	65	19	6,30	82	59	50	43	38	34	31	28	26	24	23	21
7,00	69	19	7,00	87	63	53	46	41	37	33	30	28	26	24	22
7,70	73	19	7,70	91	66	56	49	43	39	35	32	29	27	25	24
8,40	77	20	8,40	97	70	60	52	45	41	37	34	31	29	27	25
9,10	79	20	9,10	102	74	63	54	48	43	39	35	33	30	28	26
9,80	82	21	9,80	107	77	65	57	50	45	41	37	34	32	29	28
10,50	85	21	10,50	112	81	69	60	53	47	43	39	36	33	31	29

	· r · · · · · · · · · · · · · · · · · ·														
						F	LOW	R.3/4							
COL	D WA	TER	STEAM					НОТ	WATE	RIN	l/min.				
뿐	FLO IN I/		뿜				SER	VICE	TEMP	ERAT	URE I	N °C			
PRESSU IN bar	OPEN VALVE	CLOSED	PRESSU IN bar	38	43	49	54	60	66	71	77	82	88	93	99
0,35	14	9	0,35	23	19	16	14	12	11	10	9	8	8	7	7
0,70	20	10	0,70	37	28	25	22	19	17	16	14	13	12	11	10
1,40	34	13	1,40	55	45	39	33	30	26	24	22	20	19	17	16
2,10	52	17	2,10	66	54	45	40	35	31	28	26	24	22	20	19
2,80	56	21	2,80	85	72	59	51	45	40	37	34	31	29	27	25
3,50	65	23	3,50	93	89	75	65	57	51	46	42	39	36	34	31
4,20	71	25	4,20	115	95	80	70	61	55	50	45	42	39	36	34
4,90	77	28	4,90	124	101	86	75	66	59	53	49	45	41	38	36
5,60	83	30	5,60	132	108	91	79	70	63	57	52	47	44	41	38
6,30	87	31	6,30	149	122	104	90	79	70	64	58	54	50	46	43
7,00	93	33	7,00	165	136	115	100	88	79	71	65	60	55	51	48
7,70	98	35	7,70	182	149	126	109	97	86	78	71	66	60	57	39
8,40	102	36	8,40	199	163	138	120	105	94	85	78	72	66	62	58
9,10	107	38	9,10	205	168	142	124	109	97	88	80	74	69	64	60
9,80	111	40	9,80	209	171	145	125	111	99	90	81	75	70	65	61
10,50	125	42	10,50	213	174	147	127	112	101	91	83	76	71	66	62

	FLOW R.1"														
COL	D WA	TER	STEAM					НОТ	WATE	R IN I	/min.				
JR	FL0 IN I/		뿜		SERVICE TEMPERATURE IN °C										
PRESSURI IN bar	OPEN VALVE	CLOSED VALVE	PRESSU IN bar	38	43	49	54	60	66	71	77	82	88	93	99
0,35	55	14	0,35												
0,70	73	18	0,70	62	45	38	33								
1,40	91	27	1,40	125	91	77	67	59	53	48	44	40	37	34	32
2,10	105	30	2,10	150	109	92	80	70	63	57	52	48	45	41	39
2,80	118	32	2,80	170	123	105	90	80	72	65	59	55	50	47	44
3,50	127	36	3,50	189	138	117	101	89	80	72	66	60	56	52	49
4,20	141	45	4,20	209	151	129	114	95	85	81	73	67	63	59	55
4,90	150		4,90	227	166	140	122	107	96	87	80	73	68	63	59
5,60	164	48	5,60	249	182	153	133	107	105	95	86	79	74	69	64
6,30	168	50	6,30	268	195	165	143	126	113	102	93	86	80	74	69
7,00	177	52	7,00	288	209	177	154	135	121	110	100	92	85	80	76
7,70	182	52	7,70	308	223	189	163	145	129	117	107	98	91	85	80
8,40	191	55	8,40	327	238	201	174	154	137	125	114	105	97	90	85
9,10	195	57	9,10	348	252	214	185	164	146	132	121	111	103	95	90
9,80	200	59	9,80	364	266	226	195	173	154	139	127	117	108	101	95
10,50	200	64	10,50	378	275	233	202	178	159	145	132	121	112	105	97

	FLOW R.1 1/2"														
COL	D WA	TER	STEAM					НОТ	WATE	ER IN	/min.				
뿐	FL0 IN I/	DW min.	뿐				SER	VICE	TEMP	ERAT	URE I	N °C			
PRESSURE IN bar	OPEN VALVE	CLOSED	PRESSUF IN bar	38	43	49	54	60	66	71	77	82	88	93	99
0,35	70	27	0,35												
0,70	93	40	0,70	80	58										
1,40	139	58	1,40	130	95	80	70	61							
2,10	164	69	2,10	170	124	105	91	72	65	59	55				
2,80	192	77	2,80	216	157	133	115	102	91	82	75	69	64	60	56
3,50	215	85	3,50	258	187	159	137	121	108	98	90	82	76	71	66
4,20	235	93	4,20	299	218	184	160	141	126	114	104	96	89	83	78
4,90	235	93	4,90	341	248	210	182	160	144	129	119	109	101	94	88
5,60	267	106	5,60	380	276	234	202	179	160	145	132	122	113	105	98
6,30	284	112	6,30	415	302	255	221	195	175	158	144	133	123	115	111
7,00	300	118	7,00	446	324	275	238	210	188	169	155	143	132	123	115
7,70	313	124	7,70	474	344	291	253	223	199	180	165	152	140	131	122
8,40	325	129	8,40	498	362	306	265	234	209	189	173	159	147	139	127
9,10	340	134	9,10	517	376	318	276	243	218	197	180	165	153	143	134
9,80	352	139	9,80	533	388	331	284	251	224	202	185	171	158	147	137
10,50	364	143	10,50	546	397	336	291	257	230	208	190	175	162	150	141


Operation

For consumer situations the cold water enters the mixer and lifts up the piston, compressing the variable spring. This enables the opening of the steam input valve and the mixing of steam with the cold water to give hot water to the consumer. When there is no consumption, the static water pressure allows the variable spring to close the steam shut off valve to ensure that no steam remains in the mixing chamber in the absence of water.

Installation

- The mixing valve has four connections: Cold water input, steam input, and two hot water outputs. One of the two hot water ouputs should be taken out of service by using the corresponding cap and joint. Both outputs can be used simultaneously as long as there is sufficient pressure on the inputs.
- When the mixing valve is used in a closed circuit, it is necessary to generate a pressure loss of 1 bar in order to counterbalance the force of the variable spring to allow the steam to enter the mixing chamber.

Recommended installation example

- 1 Interruption valve.
- 2 Filter.
- 3 Check valve.
- 4 Connection.
- 5 Mixing valve.
- 6 Thermometer connection.
- 7 Thermometer.
- 8 Hose connection.
- 9 Clamp.
- 10 Hose.
- Support for coiling the hose or automatic hose coiler.
- 12 Watergun.

IMPORTANT

- We recommend that filters be installed in the cold water and steam inputs in order to protect the internal mechanism of the mixing valve.
- Only use EPDM type P hose, reinforced with internal material.

Start-up and adjustment of the temperature

There are two ways to obtain the required temperature: turning the control 3 on the mixing valve or adjusting the cold water shut off interruption valve 1.

To adjust the valve:

- 1- Remove screw (25) and turn the control (3) from left to right until the end of its travel.
- 2- Remove cap (34).
- 3– Turn valve (11) from left to right and then carry out the reverse process, simultaneously controlling the temperature in the hot water consumption until the required temperature is set.
- 4– Turn the control (3) from right to left to get lower temperatures.
- 5- Insert screw (25), the cap (34) and tighten them up.

Maintenance

We recommend cleaning the inside of the valve only if the water is specially hard, using a descaling product or a light solution of 7 parts water to one part hydrochloric acid.

Watergun

PI-1

Specifications

- Body of bronze covered with black synthetic rubber.
- Operated using rear-mounted trigger, more manageable, safe and less tiring.
- Instant, automatic and water-proof closure.
- Ring on one end of the pistol for hanging after use or for insertion in the trigger for a fixed setting in order to obtain an effortless, continuous flow.

Spray adjustment

1- Fine spray: Press lightly on the trigger.

Adjustable using the adjustment screw located at the other end

from the water output.

2- Constant spray: Press the trigger fully on.

R	1/2"
CONNECTIONS	Whitworth gas-tight cylindrical female thread ISO 228/1 1978 (DIN-259)
HOLE Ø	11
WEIGHT IN Kgs.	1,20
CODE	2106-253.0000

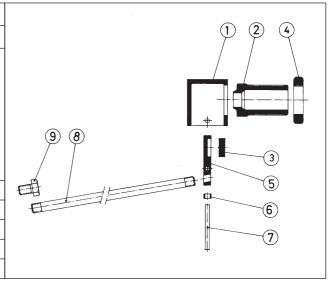
	HOT WATER FLOW								
R		1/2"							
PRESSI	JRE IN bar	FLOW IN I/min.							
C	,35	13,50							
C	,70	19,30							
3	,40	37,80							
7	7,00	45,00							
1	7,50	54,00							
24	4,50	85,50							
28	3,00	90,00							
OPERATING	MAX. PRESSI	URE IN bar 28							
CONDITIONS MAX. HOT WATER TEMP. IN °C 82									

Float valve

Model 151

To control the level of liquids in tanks, deposits, etc.

Specifications


- Nominal pressure: PN-16.
- Whitworth gas-tight male thread cylindrical connector ISO 228/1 1978 (DIN-259), from 3/8" to 2 1/2".

IMPORTANT

Depending on demand:

- Fluorelastomer closure (Viton), etc.
- Buoy with coating of Epoxy, PTFE (Teflón), Chemical nickel, Shining smooth, etc.
 Entirely Stainless steel (DIN-1.4571) (AISI-316Ti).
- (DIN-1.4301) (AISI-304), etc.

N°. PIECE	DIFCE		MATERIAL					
IN . PIECE	PIECE	STAINLESS STEEL						
1	Body	S. steel (DI	N-1.4401) (AISI-31	16)				
2	Coupling	S. steel (DI	N-1.4401) (AISI-31	16)				
3	Closure	Silicone's r	ubber					
4	Nut	S. steel (DI	N-1.4401) (AISI-31	16)				
5	Lever	S. steel (DI	N-1.4401) (AISI-31	16)				
6	Separator	S. steel (DIN-1.4401) (AISI-316)						
7	Pin	S. steel (DIN-1.4401) (AISI-316)						
8	Stem	S. steel (DIN-1.4401) (AISI-316)						
9	Connector	S. steel (DIN-1.4401) (AISI-316)						
	DN	3/8" to 2 1/2"						
	PN		16					
	PRESSURE IN bar	16	15	14				
OPERATING MAXIMUM TEMP. IN °C		120	180	200				
MINIMUM TEMP. IN °C			- 60					

Closure pressure

The closure pressure of the valve will vary with relation to the specific weight of the liquid being controlled according to the following

P = Closure pressure liquid.

Pa = Closure pressure water. pa = Specific weight water.

p = Specific weight liquid.

R	REDU- CED PITCH Ø	А	PRESSURE bar	1 2 0,5 0,5 0,5 	3 4 0,5 0,5	5 6 7 0,5 0,5	7 8 0,5 	9 10 0,5 0,5 		12 1 0,5 0,5 	3 14 0,5 	4 15 1 0,5 0,5
			BUOY	C. Ø60x120	E. Ø90			E. Ø	110			P.Ø150x6
			L	396	366			38	6			428
3/8"	6	31	н	215	210			22	5			222
3/0		31	WEIGHT IN kgs.	0,38	0,41			0,5	0			0,60
			CODE	2008-151.3382			2	.008-151.3382 (+) 34005			
			FLOW I/h WATER 20°C	1058 1560 1780	2027 2270	2482 2603	2640	2794 2880	2970 3	3250	3380	3510 3614
			BUOY	C. Ø60x120 E. Ø90	E. Ø110 P. Ø	150x60		E. Ø150				
			L	434 404	424	466		418				
1/2"	10	35	Н	252 245	260			267				
.,_			WEIGHT IN kgs.	0,53 0,56	0,64 0),90		0,84				
			CODE	2008-151.30221 (-) 34005 2008	151.30221		200	08-151.30222				
			FLOW I/h WATER 20°C	2644 3738 4575	5287 5640	6346 7385	7457	7931 8354	8674 9	9051 9425		
			BUOY	E. Ø90 E. Ø110 P.	Ø150x60		. Ø150					
			L	450 469	509		507					
3/4"	12,5	40	Н	240 255	250		282					
			WEIGHT IN kgs.	1,04 1,12	1,27		1,32					
			CODE		20	08-151.3342						
			FLOW I/h WATER 20°C				12797	13566 14289	14850			
			BUOY	E. Ø110 P. Ø200		Ø150	P. Ø25		_			
			L	475 507 565		S15	73					
1"	16		Н	257 250 275		327	35		4			
			WEIGHT IN kgs.	1,20 1,34 1,48		,25	1,7					
			CODE	2008-151.31			8-151.31 					
			FLOW I/h WATER 20°C			16044 17363	18369	19398 20510				
			BUOY	E. Ø150 P. Ø250	x95	E. Ø200		P. Ø300x15				
			L	637 737		680		787				
1 1/4"	21	50	H WEIGHT IN kgs.	317 327		355		350				
				1,82 2,2		1,95 	21.400	2,72				
			CODE FLOW I/b WATER 20°C	2008-151.31421 11508 16226 1992	22016 25662			24126 26040				
			BUOY			28080 30382 2 Ø300x115	<u> </u>	(130 or E. Ø300				
			L	660	610	710		60 or 710	IMPOI	RTANT		
			Н	285	315	310		30 or 385		- Cylindrica		
1 1/2"	24	57	WEIGHT IN kgs.		2,57	3,11		25 or 3,30		- Spherical		
			CODE	2008-151.3121	_,57	2008-151.3122	J 5,2	23 01 3,30		Flat buoy. e the releva		a far tha
			FLOW I/h WATER 20°C		29070 32442		42216	46089 50200		oy, accordii		
			BUOY	E. Ø200	P. Ø300x115	P. Ø350x1		E. Ø300		del 152.		
			L	677	777	827		777		oys suitabl		
			н	410	417	440		485		essure are a e at lower p		
2"	29	60	WEIGHT IN kgs.	3,86	4,39	4,81		4,87	use	at lower p	ressure	.
			CODE		2008-1	51.3202				L		- A
			FLOW I/h WATER 20°C	22136 31648 3829	44273 49364	54010 58439	63114	68030 72792				
			BUOY	E. Ø200 P. Ø 300x P. Ø 115	Ø350x130 or E. Ø300							œ
			L	704 804	845 or 804							
2 1/2"	40	79	Н	420 427	450 or 490							
2 1/2	40	79	WEIGHT IN kgs.	6,52 7,30	7,72 or 7,50							I
			CODE	2008-151	3222							
			FLOW I/h WATER 20°C	36015 50138 6112	70615 78342							

Buoys Model 152

Specifications

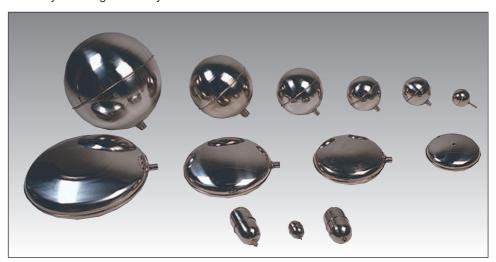
Entirely Stainless steel (DIN-1.4401) (AISI-316).

Finished: Glass-ball blast.

IMPORTANT

Depending on demand:

— Stainless steel (DIN-1.4571) (AISI-316Ti).


(DIN-1.4301) (AISI-304), etc.

— Coating of Epoxy, PTFE (Teflón), Chemical nickel, Shining smooth, etc.

	BUOY		SUPF	PORT	TUBE		SERVICE	TEMPER	ATURE °C		PLATE	WEIGHT	MAXIMUM THRUST IN	CODE
	d x L	D	R	K	Т	20	50	100	150	200	G	IN Kgs.	WATER (Kp)	2008 —
	Ø 40 v 50	Ø 42 ⁽¹⁾	M4	10		20.0	10.0	15.5	140	10.5		0,04	0,015	152.0012
AL	Ø 40 x 50	W 42 ⁽¹⁾	_	_	4/6	20,0	18,0	15,5	14,0	12,5		0,05	0,012	152.0022
ORIC			M6	16		19,0	17,1	14,8	13,3	11,9	0.8	0,13	0.128	152.0032
CYLINDRICAL	Ø 60 x 120	Ø 65	IVIO	16	-	22,0	20,0	17,2	15,0	13,5	0,8	0,14	0,128	152.00321
\sim	Ø 60 X 120	000			6/8	19,0	17,1	14,8	13,3	11,9		0,16	0,110	152.0042
	*				0/0	22,0	20,0	17,2	15,0	13,5		0,17	0,110	152.00421
	d													
	Ø 60	Ø 63	M4	30	-	38,0	34,2	29,6	26,6	23,9		0,08	0,025	152.0052
	Ø 90	Ø 94	M10	16	-	25,0	22,5	19,5	17,5	15,7		0,16	0,194	152.0062
CAL	Ø 105	Ø 112	_	_	18/20	21,9	19,7	17,1	15,4	13,8	0,8	0,28	0,340	152.0172
SPHERICAL	Ø 110	Ø 116	M10	16		20,0	18,0	15,6	14,0	12,6		0,24	0,434	152.0072
SPF	Ø 150	Ø 156	M10	16	-	15,0	13,5	11,7	10,5	9,4		0,42	1,220	152.0082
	Ø 200	Ø 206	M10	16		13,5	12,2	10,5	9,4	8,5		0,62	3,340	152.0092
	Ø 300	Ø 307	M12	10		8,5	7,7	6,6	5,9	5,3		1,60	12,280	152.0102
	d x H													
	Ø 150 x 60	Ø 156	M10	20	-	5.8	5,2	4,5	4.0	3.6		0,34	0,380	152.0112
	Ø 130 x 00	D 130	_	_	8/10		5,2	4,5	7,0	3,0	0.8	0,32	0,370	152.0122
FLAT	Ø 200 x 80	Ø 206	M10	20		4,3	3,9	3,3	3,0	2,7	0,0	0,52	0,954	152.0132
교	Ø 250 x 95	Ø 256	WITO	20		3,5	3,2	2,7	2,4	2,1		0,94	2,160	152.0142
	Ø 300 x 115	Ø 307	M12	25	_	3,3	2,9	2,5	2,3	2,0		1,40	3,700	152.0152
	Ø 350 x 130	Ø 356	10112			2,8	2,5	2,1	1,9	1,7		1,82	6,300	152.0162
	CYLI	NDRICAL						SPHERICA	\L		T		FLAT	
DIAGRAM			d R				R d		0			k c	d D d	I CONTRACTOR

- * These buoys are supplied with Epoxy coating.
- Maximum service pressure in bar, for the effect of corrosion, into the vessel. If corrosion is greater than 0,1 mm. we advise you change the buoy.
- (1) Male thread

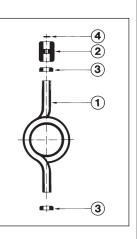
Siphon tube

For pressure gauges Model 011

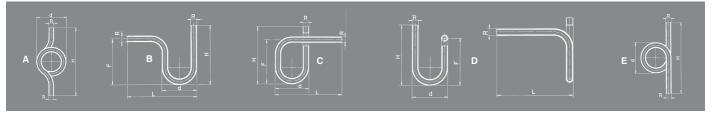
Prevents breakdowns and misalignments in pressure gauges.

Absorbs abrupt pressure changes or water hammer which cause malfunctioning pressure gauges. Isolates the pressure gauge from extreme temperatures by creating thermal isolation space. If working with steam, ensure that the pressure gauge is activated by water condensation and not by steam.

Specifications

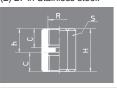

- Manufactured from unweldered tubing.
- Standard model bent cold.
- Pressure and temperature permitted by DIN-2401. Sheet 2.

IMPORTANT


Depending on demand:

- From B, C, D and E.
- NPT screws, ISO metric, socket welding ends "SW", etc.
- Alternative thicknesses and materials.
- Complies with DIN-16282, DIN-16283 and DIN-16284.

N°. PIECE	PIECE			MATE	RIAL			
IN . PIECE	PIECE	(CARBON STEEL	=	S	TAINLESS STE	EL	
1	Siphon tube	Siphon tube Carbon steel (DIN-1.0308 ST-35) Stainless steel (DIN-1.4401) (AISI-3			AISI-316)			
2	Sleeve	Brass (DIN-1.7	7660 CuZn40Pb2	2)	Stainless stee	el (DIN-1.4401) (AISI-316)	
3	Nut	Brass (DIN-1.7	7660 CuZn40Pb2	2)	Stainless steel (DIN-1.4401) (AISI-316)			
4	Gasket	Klingerit cardb	ooard		Klingerit acidi	t cardboard		
	DN			1/4" to	o 1/2"			
	PN		32			40		
	PRESSURE IN bar	32	25	20	40	32	25	
OPERATING	MAXIMUM TEMP. IN °C	120	300 (1)	400 (1)	120	300	400	
	MINIMUM TEMP. IN °C		- 10			- 60		

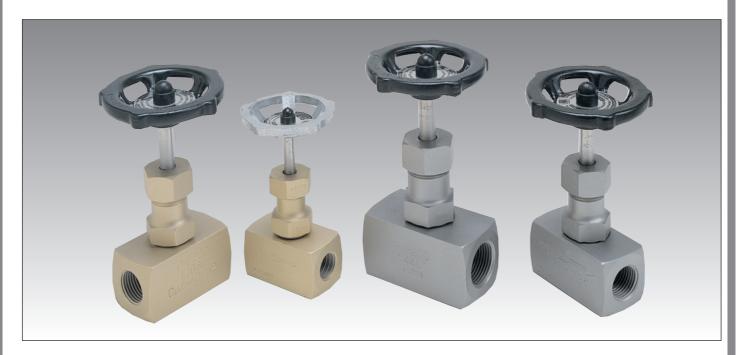


i	R	1/4" 3/8"									1/2"					
CONNE	CTIONS	Whitwo	Whitworth gas-tight cylindrical male thread ISO 228/1 1978 (DIN-259)													
TUBE CONSTRUCTION	CARBON STEEL							DIN-244	0 without	welding						
STANDARD	STAINLESS STEEL							DIN-246	2 without	welding						
TUBE	CARBON STEEL			13,80					17,20					21,30		
EXTERIOR Ø	STAINLESS STEEL			13,71					17,15					21,34		
TUBE	CARBON STEEL			8,80					12,50					16,00		
INTERIOR Ø	STAINLESS STEEL			9,23					12,53					15,80		
FORM		Α	В	С	D	Е	А	В	С	D	Е	А	В	С	D	Е
	d	85	85	85	85	85	100	100	100	100	100	118	118	118	118	118
	F		130	130	130	_	_	140	140	140			160	160	160	_
ı	Н	193	165	165	165	193	230	180	180	180	230	278	205	205	205	278
	L	_	180	180	180	_	_	210	210	210	_	_	240	240	240	_
WEIGHT IN V	CARBON STEEL	0,28	0,26	0,31	0,31	0,27	0,43	0,38	0,45	0,45	0,42	0,72	0,62	0,74	0,74	0,71
WEIGHT IN Kgs.	STAINLESS STEEL	0,27	0,26	0,30	0,30	0,26	0,43	0,38	0,45	0,45	0,41	0,76	0,66	0,78	0,78	0,75
CODE	CARBON STEEL	2201-011.7045	2201-011.70453	2201-011.70455	2201-011.70457	2201-011.70459	2201-011.7385	2201-011.73853	2201-011.73855	2201-011.73857	2201-011.73859	2201-011.7025	2201-011.70253	2201-011.70255	2201-011.70257	2201-011.70259
CODE	STAINLESS STEEL	2201-011.8042	2201-011.80423	2201-011.80425	2201-011.80427	2201-011.80429	2201-011.8382	2201-011.83823	2201-011.83825	2201-011.83827	2201-011.83829	2201-011.8022	2201-011.80223	2201-011.80225	2201-011.80227	2201-011.80229

		SLE	EVE				
F	R	1/4"	1/4" 3/8"				
CONNE	CTIONS	Whitworth gas-tight cyl	indrical female thread ISC	228/1 1978 (DIN-259)			
(С	12					
H	Н	28	34	40			
h		16	19	22			
	S	20 (1)	24	28 (2)			
WEIGTH	BRASS	0,06	0,09	0,12			
IN Kgs.	S. STEEL	0,05	0,08	0,12			
0005	BRASS	2201-011.00411	2201-011.03811	2201-011.00211			
CODE	S. STEEL	2201-011.00421	2201-011.03821	2201-011.00221			

The sleeves are supplied with the	gasket for connection to the pressure gauge	€.
(1) 19 in Stainless steel.		
(2) 27 in Stainless steel		

	NUT									
F	3	1/4"	1/4" 3/8"							
CONNE	CTIONS	Whitworth gas-tight cyl	indrical female thread ISO	228/1 1978 (DIN-259)						
н	BRASS	6	7	5						
- "	S. STEEL	5	6	7						
S	BRASS	20	24	28						
3	S. STEEL	19	24	25						
WEIGTH	BRASS	0,01	0,02	0,02						
IN Kgs.	S. STEEL	0,01	0,02	0,02						
0005	BRASS	2201-011.00412	2201-011.03812	2201-011.00212						
CODE	S. STEEL	2201-011.00422	2201-011.03822	2201-011.00222						



Needle valve

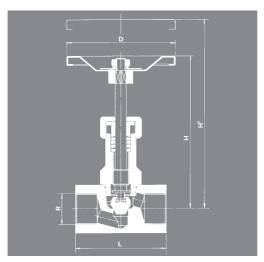
Model 147

For liquids, gases and steam.

For use in hydraulic, pneumatic, heating and steam systems, chemical and food industries, etc.

Specifications

- Mobile or floating closure.
- Reduced pitch.
- Lightly tightening the handwheel guarantees it is perfectly tightness, which exceeds the standard DIN-3230. Sheet 3.
- Axis with rear closure "back seating" which allows the packing to be changed while in use and thus avoids it having any contact with the fluid.
- Fully constructed from laminated bars.


IMPORTANT

Depending on demand:

- Possibility of manufacture in other types of material, for use in special working conditions (high temperatures, fluids, etc.).
- PTFE (Teflón) packing.
- Stainless steel handwheel or handle (DIN-1.4401) (AISI-316).
- Other connections.

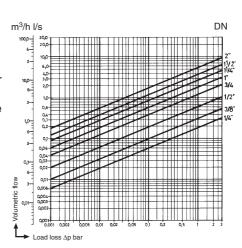
N°. PIECE	PIECE		N	MATERIA	L								
IN . PIECE	PIECE			CARBO	N STEEL			STAINLESS STEEL					
1 2 3 4 5 6 7 8 9	Body Closure Stuffing box body Ring Packing Stuffing box Stuffing box nut Axis Handwheel (1) Plate	Brass (DIN S. steel (D Brass (DIN S. steel (D Graphite Brass (DIN Brass (DIN S. steel (D C. steel (D Aluminature)	S. stee C. stee S. stee Graphit C. stee C. stee S. stee C. stee Alumin	I (DIN-1.4 I (DIN-1.7 I (DIN-1.4 te I (DIN-1.7 I (DIN-1.7 I (DIN-1.4 I (DIN-1.6 ium	1191 Ck-4 1401) (AlS 1191 Ck-4 1401) (AlS 1191 Ck-4 1191 Ck-4 1401) (AlS 0517 MU	SI-316) (-5) (SI-316) (-5) (-5) (SI-316) (ST-3)	S. steel S. steel Graphit S. steel S. steel S. steel C. steel Alumini	(DIN-1.4 (DIN-1.4 (DIN-1.4 (DIN-1.0 um	401) (AIS 401) (AIS 401) (AIS 401) (AIS 401) (AIS 401) (AIS 517 MU S	SI-316) SI-316) SI-316) SI-316) SI-316) SI-316) SI-316)			
11 12	Nut Washer		S. steel (DIN-1.4401) (AISI-316)						,				
	DN PN		1/4" 1	`	S, NPT or	r SW)		21	50		8		
	PRESSURE IN bar	200	250	211	180	167	250	207	170	164	•		
OPERATING			175	34									
CONDITIONS	MAXIMUM TEMP. IN °C	120 150 200			120	300	350	400	120	120 200 350 400			_
	MINIMUM TEMP. IN °C	- 60 - 10 - 60											

	R		1/4"	3/8"	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"		
			Whitworth	gas-tight cyli	ndrical femal	e thread ISC	228/1 1978	(DIN-259)				
	CONNECTIONS		NPT thread ANSI - B 2.1									
			Socket we	ding ends S	W ANSI - B 1	6.11						
	Н		77	89	102	111	132	158	172	191		
	h ¹		83	94	111	121	146	173	192	216		
	L		50	55	65	75	90	95	100	112		
	D		60	60	75	75	90	100	125	125		
RI	EDUCED PITCH @)	6,00	8,00	9,50	11,50	15,00	17,00	21,00	25,00		
WEIGHT	BRASS		0,38	0,65	0,98	1,12	2,58	3,36	4,59	7,76		
WEIGHT	CARBON STEEL		0,35	0,50	0,92	1,05	2,40	3,16	4,31	7,22		
IN Kgs.	STAINLEES STEEL		0,36	0,51	0,93	1,06	2,43	3,20	4,36	7,31		
	BRASS	GAS	0041	0381	0021	0341	0101	0141	0121	0201		
	2004-147.	NTP	00411	03811	00211	03411	01011	01411	01211	02011		
		GAS	0044	0384	0024	0344	0104	0144	0124	0204		
CODE	CARBON STEEL	NTP	00441	03841	00241	03441	01041	01441	01241	02041		
	2004-147.	SW	00442	03842	00242	03442	01042	01442	01242	02042		
	STAINLESS STEEL	GAS	0042	0382	0022	0342	0102	0142	0122	0202		
	2004-147.	NTP	00421	03821	00221	03421	01021	01421	01221	02021		
	2004-147.	SW	00422	03822	00222	03422	01022	01422	01222	02022		

	FLOW CO	EFFICIENT
DN	Kv m³/h ΔP = 1 bar	Cv I/min . $\Delta P = 1 Psi = 0,07 bar$
1/4"	0,68	3,00
3/8"	1,11	5,00
1/2"	2,16	10,10
3/4"	4,10	18,80
1"	6,20	25,00
1 1/4"	9,80	43,00
1 1/2"	12,95	52,00
2"	19,40	82,00

Load losses

The adjoining diagram reflects the load loss curves for water at 20°C .


In order to determine other fluids load losses, calculate the flow of these equivalent to water.

$$Q_A = \sqrt{\frac{Q}{1.000}} \cdot Q$$

 Q_A = Flow equivalent to water in m³/h.

Q = Fluid density in operating conditions in Kg/m³.

Q = Fluid flow in operating conditions in m³/h.

Blowdown valve for bleeding dirt and sludge

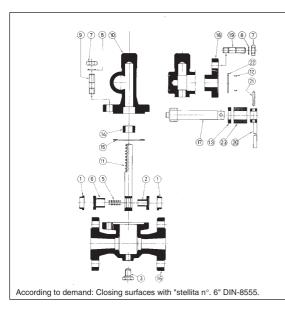
For steam boilers

Model 460

The water in the boiler contains salts, which are built up by the continuous evaporation. If these salts are not eliminated, bubbles and foam are formed when the density of the water increased.

To prevent these lime deposits forming, the water supply must be suitably treated, with the result that certain salts are changed producing impurities which form sludge and encrusted deposits which then adhere to the sides or the bottom of the boiler and to the combustion tubes, together with particles of dirt, remains of electrodes, carbonic acid, oxygen, etc. This leads to a high level of rust which may:

- Destroy the metal plate of the boiler, causing high maintenance costs.
- Produce thermic voltages, causing cracks in the metal plate and soldering cord.
- Notably slow down thermic transmission, meaning an unnecessary and excessive consumption of fuel.


Nominal pressure: PN-40.

Permitted pressures and temperatures according to DIN-2401. Sheet 2.

Flange connection: DN-25, 32, 40 and 50 (DIN-2545).

Specifications

- A the draining section is opened quickly and completely by driving the lever from right to left. The deposits, collected at the bottom of the boiler, are disturbed and sucked up by the sudden air intake which carries them out.
- Direct emptying passage, meaning a high volume and low level of load loss.
- Rotating the lever from left to right causes instant closing, preventing irrevocable losses of water and pressure.
- Seatings and stoppers treated and balanced ensuring a level of tightness higher than that required by DIN-3230, Sheet 3.
- Equipped with a screw for the drainage of the sedimentations.
- Simplicity of design ensures good performance.

	N°. PIECE	PIECE		MATERIAL	
	1 2,6 3 4,15 5 7 8 9,19 10 11 12 13 14 16 17 18 20 21 22 23	Seating Plug Cap Coupling Spring Nut Washer Stud Cover Rack Rivets Gland disc Valve base Body Axis with pinion Gland Lever Elastic gudgeon Gauge plate Seal	S. steel (C Carb. stee Klingerit c. S. steel (C Carb. stee Carb. stee Carb. steel S. steel (C Carb. steel Bronze (D Bronze (D Cast steel S. steel (C Cast steel	DIN-1.4300) (AISI-C) (DIN-1.1141 CK-II (DIN-1.1141 CK-II (DIN-1.1141 CK-II (DIN-1.1181 CK-II (DIN-1.0619 GS-C) (DIN-1.1231 CK-II (DIN-1.1231 (DIN-1.1231 CK-II (DIN-1.1231 CK-	420) 45) 302) 15) 15) 15) 15) 225) 303) 15) Rg-5) CuSn5ZnPb) C 25) 303) C 25)
	DN PN		25 to 50		
			40		
	OPERATING	PRESSURE IN bar	40	35	32
	CONDITIONS	MAXIMUM TEMP. IN °C	120	200	250

Efficiency and Emptying

Bleeding processes should coincide as far as possible with moments when the water is at rest or at minimum steam extraction, so that the deposits are collected at the bottom of the boiler.

Carry out bleeding process at least every 8 hours. The effective duration is estimated to be $3\dot{-}4$ seconds although we recommend you keep to the following mathematical model: To establish the salinity of the water, the quantity of salts extracted per unit of time must be equal to that of the water supply in this same period. Which can be expressed:

$$\mathsf{M}\cdot\mathsf{A}=\mathsf{S}\cdot\mathsf{P}$$

Where:

Q = Real steam production of the boiler. (Kg/h).

A = Water supply. (I/h).

M = Salinity of the water supply. (mg/l).

P = Water extracted in the bleeding process. (I/h).

S = Desired salinity inside the boiler. (mg/l).

Q = Specific mass of water inside the boiler. (Kg/l).

p = Working pressure. (bar).

The water to be bled compared to the steam produced is:

$$\mathsf{P} = \frac{\mathsf{M}}{\mathsf{(S-M)} \cdot \mathsf{Q}} \cdot \mathsf{Q}$$

For the DN the volume (C) in I/s can be calculated as shown in the

The quotient (P/C) tells us the intervals between bleeding processes and the duration of them (T) in seconds per hour.

The combination of the Continuous desalting valve* and the Blowdown valve for bleeding dirt and sludge* is essential for optimizing the boiler's efficiency, and include its maximum security and availability.

Neither of them can be replaced with others not designed for this specific application. Their moderate cost is depreciated in the short term.

- * (See brochure for Models 560 and 560-A).

 (See brochure for Models 260 and 260-A).

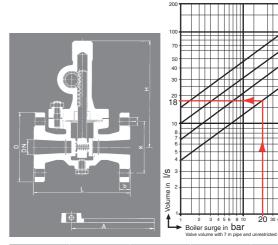
Example:

Q = 1.850 Kg/h.

M = 150 mg/l.

S = 4.000 mg/l.

Q = 1 Kg/I.


p = 20 bar.

P = 72.07 l/h.

C = 18 l/s.

T = 4 s. -The boiler will bleed itself for 4 seconds every hour.

-If, in accordance with the mathematical model, times shorter or longer than 3÷4 seconds are obtained, the bleeding process must be carried out more or less times.

DN	25	32	40	50
Н	179	245	245	245
L	160	180	200	230
D	115	140	150	165
K	85	100	110	125
1	14	18	18	18
b	18	18	18	20
А	135	170	170	170
DRILLS N°.	4	4	4	4
WEIGHT IN Kgs.	8,50	16,40	18,50	20.00
CODE	2103-460.8104	2103-460.8144	2103-460.8124	2103-460.8204

Informative brochure, without obligation and subject to our General Sales Conditions.

VYC industrial, sa

e-mail: info@vycindustrial.com http://www.vycindustrial.com

Blowdown valve for bleeding dirt and sludge

For steam boilers

Model 260

The water in the boiler contains salts, which are built up by the continuous evaporation. If these salts are not eliminated, bubbles and foam are formed when the density of the water increases.

To prevent these lime deposits forming, the water supply must be suitably treated, with the result that certain salts are changed producing impurities which form sludge and encrusted deposits which then adhere to the sides or the bottom of the boiler and to the combustion tubes, together with particles of dirt, remains of electrodes, carbonic acid, oxygen, etc. This leads to a high level of rust which may:

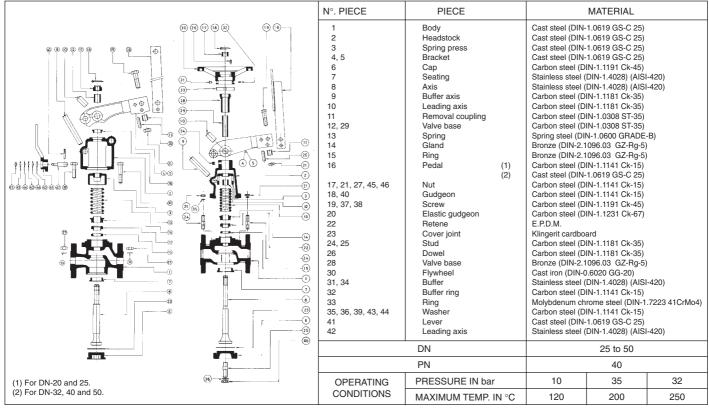
- Destroy the metal plate of the boiler, causing high maintenance costs.
- Produce thermic voltages, causing cracks in the metal plate and soldering cord.
- Notably slow down thermic transmission, meaning an unnecessary and excessive consumption of fuel.

Nominal pressure: PN-40.

Permitted pressures and temperatures according to DIN-2401. Sheet 2.

Flange connection: DN-20, 25, 32, 40 and 50 (DIN-2545).

Specifications


- Pushing the pedal downwards causes the drain section to open quickly and completely. The deposits collecting at the botton of the boiler, are disturbed and sucked up by the sudden air intake which carries them out.
- Instant closing device, preventing irrevocable losses of water and pressure.
- Seating and closing axis treated and balanced, so that a degree of tightness, even higher than the level required by DIN-3230, Sheet 3, is obtained.
- Coupling of the closing axis is self-tightening and maintenance free.
- To solve problems of space, the pedal can be positioned vertically or horizontally.

Model DN-20 and 25. (Pedal driven).

- By moving the blocking lever towards the emptying position, the opening blocks.
- With the blocking lever in the opposite direction to that of the passage, the valve is in manual drive.
- When the valve is being manually driven and with an interlocking gudgeon, it can be fixed in the continuous draining position for emptying the boiler.

Model DN-32, 40 and 50. (Pedal and flywheel driven).

- Rotating the flywheel towards (C) all the way round, locks the valve into the closed position.
- Driving the flywheel between the closed position (C) and the central buffer ("Clic") an emptying position is obtained, with the pedal, which is proportionate to the pitch section which we set.
- Rotating the flywheel towards (A), the valve stays open increasing progressively, the pitch section. When it will go no further towards (A), a maximum opening is obtained which facilitates the emptying of the boiler.

Efficiency and Emptying

Bleeding processes should coincide as far as possible with moments when the water is at rest or at minimum steam extraction, so that the deposits are collected at the bottom of the boiler.

Carry out bleeding process at least every 8 hours. The effective duration is estimated to be $3 \div 4$ seconds although we recommend you keep to the following mathematical model: To establish the salinity of the water, the quantity of salts extracted per unit of time must be equal to that of the water supply in this same period. Which can be expressed:

 $M \cdot A = S \cdot P$

Where:

Q = Real steam production of the boiler. (Kg/h).

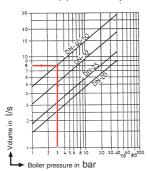
A = Water supply. (I/h).

M = Salinity of the water supply. (mg/l).

P = Water extracted in the bleeding process. (I/h).

S = Desired salinity inside the boiler. (mg/l).

Q = Specific mass of water inside the boiler. (Kg/I).


p = Working pressure. (bar).

The water to be bled compared to the steam produced is:

$$P = \frac{M}{(S-M) \cdot Q} \cdot Q$$

For the DN the volume (C) in l/s can be calculated as shown in the diagram.

The quotient (P/C) tells us the intervals between bleeding processes and the duration of them (T) in seconds per hour.

Example: Q = 1.520 Kg/h. M = 200 mg/l. S = 4.000 mg/l. Q = 1 Kg/l.

p = 3 bar.

P = 80 l/h.

C = 8 l/s.

T = 10 s.

-The boiler will bleed itself for 10 seconds every hour.

-If the bleeding time is of 3 seconds = 3 bleeding every hour. The interval between bleeding should be of 20 minutes.

The combination of the Continuous desalting valve* and the Blowdown valve for bleeding dirt and sludge* is essential for optimizing the boiler's efficiency, and include its maximum security and
availability.

WEIGHT IN Kgs

Neither of them can be replaced with others not designed for this specific application.

Their moderate cost is depreciated in the short term.

* (See brochure for Models 560 and 560-A).

• (See brochure for Models 460 and 260-A).

Informative brochure, without obligation and subject to our General Sales Conditions.

Founded in 1014

WYC

9
N

(*) +34 93 735 75 00 +34 93 735 81 35 119
TRANSVERSAL, 179 - 08225 TERRASSA (BARCELONA) SPAIN e-mail: info@vycindustrial.com
http://www.vycindustrial.com

Blowdown valve for automatic bleeding dirt and sludge

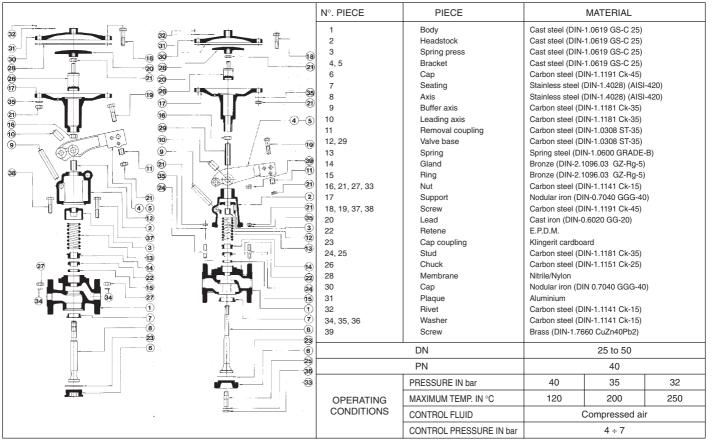
For steam boilers

Model 260-A

The water in the boiler contains salts, which are built up by the continuous evaporation. If these salts are not eliminated, bubbles and foam are formed when the density of the water increases.

To prevent these lime deposits forming, the water supply must be suitably treated, with the result that certain salts are changed producing impurities which form sludge and encrusted deposits which then adhere to the sides or the bottom of the boiler and to the combustion tubes, together with particles of dirt, remains of electrodes, carbonic acid, oxygen, etc. This leads to a high level of rust which may:

- Destroy the metal plate of the boiler, causing high maintenance costs.
- Produce thermic voltages, causing cracks in the metal plate and soldering cord.
- Notably slow down thermic transmission, meaning an unnecessary and excessive consumption of fuel.


Nominal pressure: PN-40.

Permitted pressures and temperatures according to DIN-2401. Sheet 2.

Flange connection: DN-20, 25, 32, 40 and 50 (DIN-2545).

Specifications

- The drainage section is opened quickly and completely by the pressure of the control fluid on the membrane. The deposits collecting at the bottom of the boiler, are disturbed and sucked up by the sudden air intake which carries them out.
- Instant closing device, preventing irrevocable losses of water and pressure.
- Seating and closing axis treated and balanced, so that a degree of tightness, even higher than the leve required by DIN-3230, Sheet 3, is obtained.
- Coupling of the closing axis is self-tightening and maintenance free.

Efficiency and Emptying

Bleeding processes should coincide as far as possible with moments when the water is at rest or at minimum steam extraction, so that the deposits are collected at the bottom of the boiler.

Carry out bleeding process at least every 8 hours. The effective duration is estimated to be $3 \div 4$ seconds although we recommend you keep to the following mathematical model:

To establish the salinity of the water, the quantity of salts extracted per unit of time must be equal to that of the water supply in this same period. Which can be expressed:

Where

$$\mathsf{M}\cdot\mathsf{A}=\mathsf{S}\cdot\mathsf{P}$$

- Q = Real steam production of the boiler. (Kg/h).
- A = Water supply. (I/h).
- M = Salinity of the water supply. (mg/l).
- P = Water extracted in the bleeding process. (I/h).
- S = Desired salinity inside the boiler. (mg/l).
- Q = Specific mass of water inside the boiler. (Kg/l).
- p = Working pressure. (bar).

Example:

Q = 1.520 Kg/h.

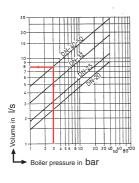
M = 200 mg/l.

S = 4.000 mg/l.

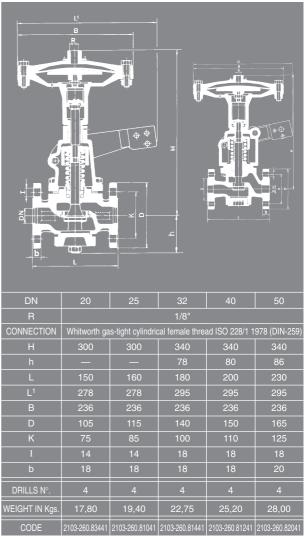
Q = 1 Kg/I.

p = 3 bar.

The water to be bled compared to the steam produced is:


$$P = \frac{M}{(S-M) \cdot Q} \cdot Q$$

P = 80 I/h.


For the DN the volume (C) in I/s can be calculated as shown in the diagram.

 $C = 8 \frac{1}{s}$

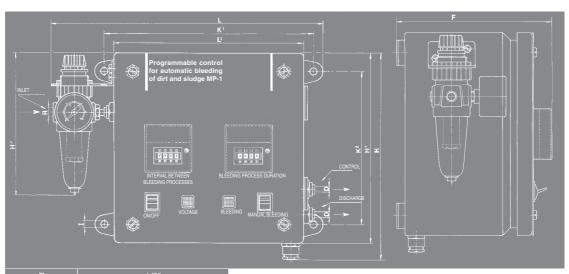
The quotient (P/C) tells us the intervals between bleeding processes and the duration of them (T) in seconds per hour.

- T = 10 s.
- The boiler will bleed itself for 10 seconds every hour.
- If the bleeding time is of 3 seconds = 3 bleeding every hour. The interval between bleeding should be of 20 minutes.

Programmable control for automatic bleeding of dirt and sludge

MP-1

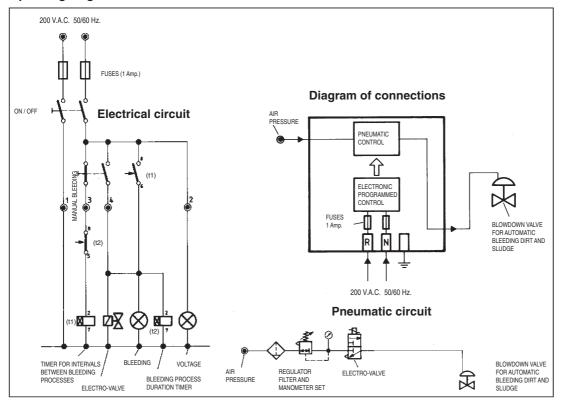
The control device for automatic bleeding of dirt and sludge consists of air regulator filter with manometer, three-way electro-valve, on-off switch, voltage gauge, bleeding gauge, manual bleeding switch, timer for intervals between bleeding processes and bleeding process duration timer. All this in one single control panel, especially conceived and properly wired and connected.


Specifications

— Voltage: 220 V.A.C. \pm 10% 50/60 Hz.

- Consumption: 10 V.A.

— Temperature: -10 to +55°C.


— Protection: IP-50.— Fuses: 1 A/250 V.

R	1/8"	
CONNECTION	Whitworth gas-tight cylindrical female thread ISO 228/1 de 1978 (DIN-295)	
Н	218	
H¹	200	
H ²	150	
F	152	
L	280	
L1	200	
D	Tube connection Ø 6/4	
K¹	220	
K ²	161	
I	7	
WEIGHT IN Kgs.	4,56	
CODE	2103-260.0000	

- 1 Regulator filter with manometer:
 - Whitworth gas-tight cylindrical female thread ISO 228/1 1978 (DIN-259): 1/8".
 - Filtering elements: 25 μ.
 - Maximum working conditions: 10,5 bar to 50°C.
 - With manual bleeding device.
 - Regulation control without axial shift and with quick blocking device for regulated pressure.
- 2 Three-way electro-valve:
 - Whitworth gas-tight cylindrical female thread ISO 228/1 1978 (DIN-259): 1/8".
 - Effective pitch: Ø 2 mm.
 - Maximum working pressure: 10 bar.
 - Maximum control frequency: 2000 min. at 7 bar.
 - Bi-stable manual control supplies, for emergencies.
 - Does not necessarily require lubrication.
- 3 On-off switch.
- 4 Voltage gauge.
- 5 Bleeding gauge.
- 6 Manual bleeding switch.
- Timer for intervals between bleeding processes:Adjustable from 1 minute to 99 hours 59 minutes.
- 8 Bleeding process duration timer:
 - Adjustable from 1 tenth of a second to 99 seconds 99 tenths of a second.

Operating diagram

Operation

Before starting the automatic bleeding process, we must preset the time for the "interval between bleeding processes" and that of the "bleeding process duration".

Check that the air pressure in the regulator filter is $4 \div 7$ bar and the input voltage between the terminals R-N 220 V.A.C.

Activating the switch "on", we activate the whole process. Once the pre-set time has passed, the timer for the "interval between bleeding processes" (t1), sends an impulse to the three-way electro-valve. This lets the control fluid (air) through and the valve opens quickly and completely. When the time for "bleeding process duration", (t2) has passed, another impulse on the electro-valve cuts the passage of the control fluid and the valve closes mechanically by the action of the spring. The next bleeding session will occur once the time of the "interval between bleeding processes" has passed (t1). Activating the "manual bleeding" switch leads to a prompt bleeding process and allows the boiler, if so desired, to be emptied.

The three-way electro-valve can be activated manually in case of a power cut.

The combination of the Continuous desalting valve* and the Blowdown valve for bleeding dirt and sludge* is essential for optimizing the boiler's efficiency, and include its maximum security and availability.

Neither of them can be replaced with others not designed for this specific application. Their moderate cost is depreciated in the short term.

* (See brochure for Models 560 and 560-A).

• (See brochure for Models 460 and 260).

http://www.vycindustrial.com

Continuous desalting valve

For steam boilers

Model 560

The continuous desalting valve is used to empty an adjustable quantity of water from the steam boiler, removing:

- Organic matter and mineral salts in solution. (Calcium, magnesium, sodium, potassium, iron, bicarbonate ions, chlorides, sulphates, nitrates, ...etc.).
- Solid materials in suspension. (Sand, clay, metal residues, rock residues, organic matter, ...etc.).

The continuous bleeding process prevents:

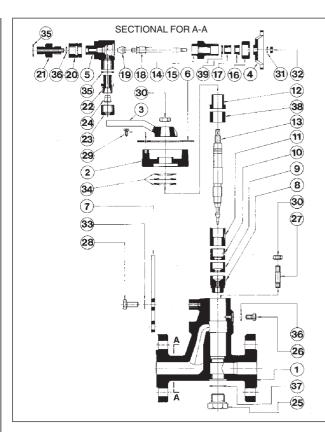
- Damage caused by erosion and perforation, entailing the following high costs:
 - Direct: Replacement or repair of materials.
 - Indirect: Stoppages, product losses, ...etc.
- Danger of boiler explosion.

and reduces:

- Incrustations and sediments caused by precipitation of calcium and magnesium salts, which obstruct thermic transmission and which cause unnecessary and excessive fuel consumption.
- Foam formation caused by excessive saline concentration, with its corresponding drag.

Nominal pressure: PN-40.

Permissible pressures and temperatures according to DIN-2401. Page 2.


Flange connection: DN-20 (DIN-2545).

Specifications

- Consists of Faucet for taking samples and Measuring nozzle in one single unit.

- 1 Faucet for taking samples: Makes process of analysing the salt concentration of boiler water easier. Possibility of guided connection for pipes with a \emptyset of 6/8 mm.
- 2 Reader plate: Allows bleeding positions to be seen clearly and concisely, even from some distance away.
- 3 Control lever. For precise and progressive adjusting of quantities to be bled.
- 4 Plug for draining the measuring nozzle.
- Measuring nozzle: Acts as a valve, measuring and control organ. The water under pressure expands silently and gradually into it. Thus, dirt, incrustations and salt deposits are removed. Due to this gradual expansion, the system does not suffer erosion.

N°. PIECE	PIECE		MATER	RIAL		
N°. PIECE 1 2 3 4 5 6 7 8 9,10 11 12,17 13 14 15 16 18 19 20 21 22 23 24 25 26,28	1 Body 2 Gland body 3 Control lever 4 Flywheel 5 Sample-taking faucet body 6 Reader plate 7 Lever lock 8 Measuring nozzle seating 9,10 Measuring nozzle endless nut 11,17 Gland 13 Measuring nozzle shaft 14 Sample-taking faucet gland body 15 Sample-taking faucet gland washer 16 Gland nut 18 Sample-taking faucet shaft 19 Seal 20 Sample-taking faucet connection nut 21 Sample-taking faucet connection 22 Adapter 23 Adapter nut 24 Cutting ring		MATERIAL Cast steel (DIN-1.0619 GS-C 25) Cast steel (DIN-1.0619 GS-C 25) Cast iron (DIN-0.6020 GG-20) Aluminium (DIN-3.2581.01 G-AISI 12) Stainless steel (DIN-1.4008) (ASTM A743 CA15) Aluminium Carbon steel (DIN-1.1141 Ck-15) Stainless steel (DIN-1.4028) (AISI-420) Stainless steel (DIN-1.4028) (AISI-420) Stainless steel (DIN-1.4028) (AISI-420) Carbon steel (DIN-1.1191 Ck-45) Stainless steel (DIN-1.1191 Ck-45) Stainless steel (DIN-1.1191 Ck-45) Stainless steel (DIN-1.1191 Ck-45) Stainless steel (DIN-1.4011) (AISI-316) Carbon steel (DIN-1.4011) (AISI-316) Stainless steel (DIN-1.1191 Ck-45) Carbon steel (DIN-1.0308 ST-35) Carbon steel (DIN-1.0308 ST-35) Carbon steel (DIN-1.0308 ST-35)			
27 29 30 31 32 33 34 35, 36, 37 38, 39	Screw Stud Screw Nut Washer Nut Washer Disc spring Joint Seal	Carbon steel (DIN-1.1191 Ck-45) Carbon steel (DIN-1.1181 Ck-35) Stainless steel (DIN-1.4401) (AISI-316) Carbon steel (DIN-1.4401) (AISI-316) Stainless steel (DIN-1.4401) (AISI-316) Stainless steel (DIN-1.4401) (AISI-316) Carbon steel (DIN-1.1401) (AISI-316) Carbon steel (DIN-1.1141 Ck-15) Vanadium chrome steel (DIN-1.8159 50CrV4) Copper Graphite				
	DN PN		20			
			40			
OPERATING	PRESSURE IN bar	40	35	32	28	
CONDITIONS	MAXIMUM TEMP. IN °C	120	200	250	300	

Installation

- a) Make a by-pass with some kind of drilling pipe, leading out from inside the steam chamber at 30+50 mm. below the minimum water level.
- b) Connect this by-pass to the continuous desalting valve, which can be installed in any position.
- c) Convey the water coming out of the valve to the outlet.
- When the bleeding percentage is high, the heat can be overcome using an exchanger.

Operation, efficiency and emptying

To establish the boiler's salinity, the quantity of salts extracted per unit of time must be equal to that of the water supply in this same period. This can be expressed in the following way:

$$M \cdot A = S \cdot P$$

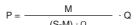
Q = Real steam production of the boiler. (Kg/h).

A = Water supply. (I/h).

M = Salinity of the water supply. (mg/l).

P = Water extracted in the bleeding process. (I/h).

S = Desired salinity inside the boiler. (mg/l).


Q = Specific mass of water inside the boiler. (Kg/I).

p = Working pressure. (bar).

Example: Q = 1.000 Kg/h. M = 1.000 mg/l.S = 6.000 mg/l.Q = 1 Kg/l.p = 13 bar.

The effect is achieved when the salts are removed continuously and without movement to prevent uncontrolled water losses from the boiler.

The water to be bled in relation to the steam produced is:

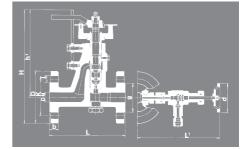
P = 200 l/h

Using the calibrated scale, the lever allows exact adjustment of the measuring nozzle.

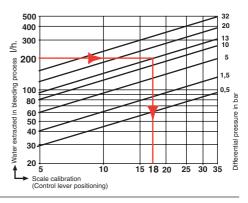
We shall set the lever at the position that allows us to remove a volume of water (P) at a differential pressure. Differential pressure = Working pressure - (Back pressure + Load losses).

Continuous desalting is achieved with adjustment values of 0 to 35.

The position "Direct bleeding" corresponds to the section of nozzle that is totally open and allows complete bleeding in a few seconds. In this case, the volume is approximately three times greater than that for 35 on the scale.


The combination of the Continuous desalting valve* and the Blowdown valve for bleeding dirt and sludge* is essential for optimizing the boiler's efficiency, and include its maximum security and availability.

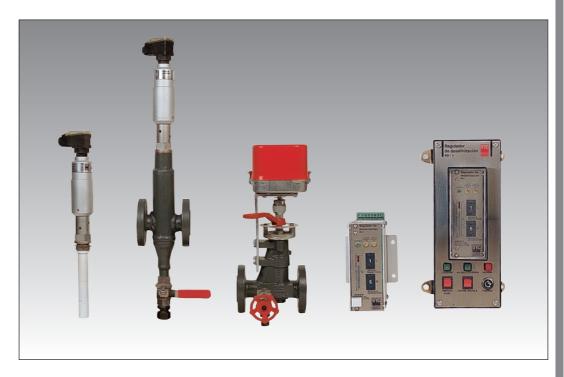
Neither of them can be replaced with others not designed for this specific application.


Their moderate cost is depreciated in the short term.

* (See brochure for Models 560-A).

(See brochure for Models 260, 260-A and 460).

DN	20
Н	227
h1	174
L	150
L1	167
d	60
D	105
K	75
1	14
b	18
DRILLS N°.	4
WEIGHT IN Kgs.	5,70
CODE	2102-560.8344



Automatic continuous desalting valve

For steam boilers

Model 560 - A

The conductivity electrode EC-1, the desalting controller RD-1 and the continuous desalting valve with servomotor allow the automatic desalting process of boiler water which eliminates:

- Organic matter and mineral salts in solution. (Calcium, magnesium, sodium, potassium, iron, bicarbonate ions, chlorides, sulphates, nitrates, ...etc.).
- Solid materials in suspension. (Sand, clay, metal residues, rock residues, organic matter, ...etc.).

The continuous bleeding process prevents:

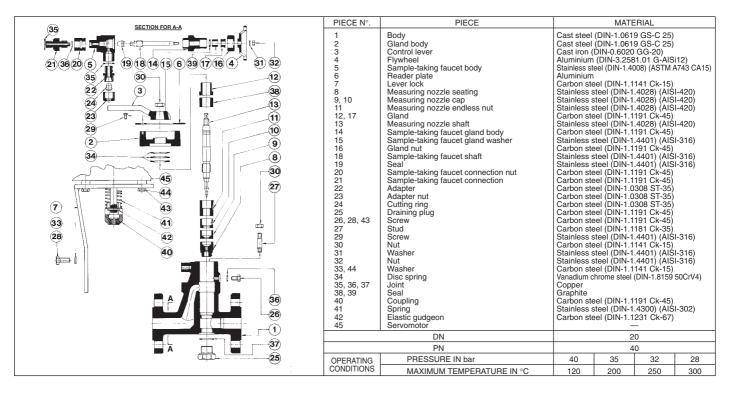
- Damage caused by erosion and perforation, entailing the following high costs:
 - Direct: Replacement or repair of materials.
 - Indirect: Stoppages, product losses, ...etc.
- Danger of boiler explosion.

and reduces

- Incrustations and sediments caused by precipitation of calcium and magnesium salts, which obstruct thermic transmission and which cause unnecessary and excessive fuel consumption.
- Foam formation caused by excessive saline concentration, with its corresponding drag. This combination of measuring comparison and control ensures minimum water loss and thus gives considerable energy savings.

Nominal pressure: PN-40.

Permissible pressures and temperatures according to DIN-2401. Page 2.

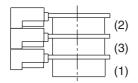

Flange connection: DN-20 (DIN-2545).

Specifications

— The unit consists of a Continuous desalting valve with servomotor, a Conductivity electrode EC-1 and Desalting controller RD-1 with or without assembly cupboard.

A Continuous desalting valve with servomotor

- Faucet for taking samples: Makes process of analysing the salt concentration of boiler water easier. Possibility of guided connection for pipes with a Ø of 6/8 mm.
- 2 Reader plate: Allows bleeding positions to be seen clearly and concisely, even from some distance away.
- 3 Plug for draining the measuring nozzle.
- Measuring nozzle: Acts as a valve, measuring and control organ. The water under pressure expands silently and gradually into it. Thus, dirt, incrustations and salt deposits are removed. Due to this gradual expansion, the system does not suffer erosion.
- Servomotor mounted on the valve on an angle mounting. A synchronised reversable motor is used as a transmission element. Via gearing it adjusts the position of the regulation lever.



Operation

If the accepted conductivity value previously selected is exceeded the desalting controller RD-1, via indication from the conductivity electrode EC-1, operates the servomotor and opens the continuous desalting valve to the **OPEN** position. When the conductivity decreases the adjustment mechanism returns to the **SERVICE** position giving continuous economical desalting. When the "valve closed" switch is on the adjustment mechanism automatically puts the valve in the **CLOSED** position. These positions are fixed by the micro limit switches.

Adjustment of micro limit switches

The micro limit switches come ready adjusted from the factory:

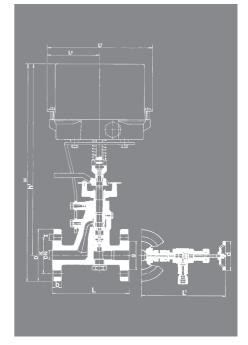
Micro switch position	Position of the lever on the indicator plate
(1) CLOSED	0
(2) SERVICE	8
(3) OPEN	35

Using an screwdriver the positions of the micro switch can be readjusted. Turning the right to left decreases the purge position and turning it the left to right increases it.

Manual or automatic operation

To operate the valve manually:

- 1- Cut off the power supply.
- 2- Mark the position of the regulation lever on the indicator plate.
- 3- Push the connection against the spring and turn it 90°.
- 4- Place the regulation lever in the required position.

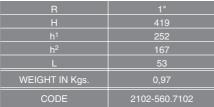

Restoring automatic operation:

- 1- Place the regulation lever in the position marked on the indicator plate.
- 2- Turn the connection 90° and fit it in the axis of the measuring nozzle.
- 3- Reconnect the power supply.

B Servomotor

Reversible synchronised motor. Gearbox with permanent lubrication. Voltage: 220 V.A.C. ± 10% 50/60 Hz. Commutated micro limit switches: 3. Adjustment time: 135 s/90°. Cell: Maximum load. 15 Nm. Ambient temperature: 50°C.

Protection: IP-54.

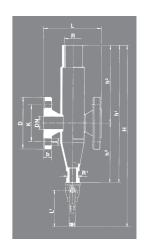

DN	20
н	372
h¹	319,5
L	150
L¹	167
L ²	70
L ³	140
d	60
D	105
К	75
I	14
b	18
DRILLS N°.	4
WEIGHT IN Kgs.	7,40
CODE	2102-560.83441

Conductivity electrode. EC-1

Connection: Whitworth gas-tight cylindrical male thread ISO 228/1 1978 (DIN-259) 1".

Maximum operating temperature: 238°C. Maximum operating pressure: 32 bar.

Protection: IP-65.



Electrode connection collector

Nominal pressure: PN-40.

Allowable pressures and temperatures according to DIN-2401. Sheet 2. Flange connection: DN-20 (DIN-2545). Electrode connection: Whitworth gastight cylindrical female thread ISO 228/1 1978 (DIN-259) 1".

20
1"
390
267
157
110
115
1/2"
100
105
75
14
18
4
3,33
2102-560.83442

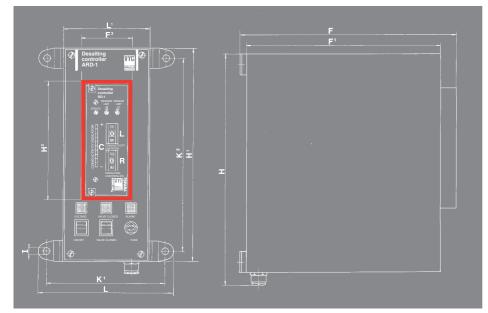
We recommend adding a blowoff valve to the equipment, Mod. 999, 1/2" joined to the waste pipe for periodic release of sludge. As a minimum a 2 ÷ 3 second release must be performed every 8 hours.

Desalting controller. ARD-1. RD-1

Voltage: 220 V.A.C. ± 10% 50/60 Hz. Electric consumption: Approximately 4,5 VA.

Relay contact: 250 V/4 A 750 VA.

Safety contact: Maximum 2A-Mitteltraeg. Ambient temperature: -20 to + 70°C.

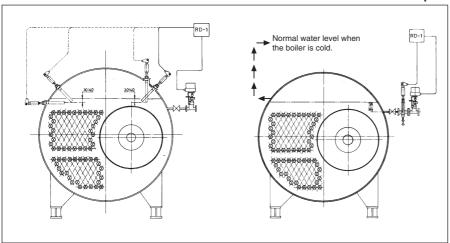

Regulator protection: IP - 00.

Regulator protection in assembly cupboard: IP - 50.

Regulation index: 2,5 to 20 mS. Limit index: 40 to 75 mS.

Desalting controller with assembly cupboard ARD-1.

Desalting controller without assembly cupboard RD-1.



MODEL	ARD-1	RD-1
Н	265	_
H¹	250	_
H ²	_	137
F	245	_
F ¹	220	_
F ²	_	57
L	158	_
L ¹	100	_
K¹	138	_
K ²	226	_
I	7,5	_
WEIGHT IN Kgs.	2,50	0,93
CODE 2102-560.	0001	0002

The desalting controller without assembly	, aughoord DD 1 is aughlied in a	10" oub rook occarding to DIN 11101
The desamon communer without assembly	/ CHODOSTO BLJ-T IS SHODHAO ID A	1 19 SHD-18CK 8CCOMMO 10 1 JIN-4 1494

Installation examples

Operation, efficiency and emptying

To establish the boiler's salinity, the quantity of salts extracted per unit of time must be equal to that of the water supply in this same period. This can be expressed in the following way:

$$M.A = S.P$$

Q = Real steam production of the boiler. (Kg/h).

A = Water supply. (I/h).

M = Salinity of the water supply. (mg/l).

P = Water extracted in the bleeding process. (I/h).

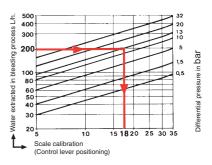
S = Desired salinity inside the boiler. (mg/l).

Q =Specific mass of water inside the boiler. (Kg/I).

p = Working pressure. (bar).

Example: Q = 1.000 Kg/h.M = 1.000 mg/l.S = 6.000 mg/l.

Q = 1 Kg/l.


p = 13 bar.

The effect is achieved when the salts are removed continuously and without movement to prevent uncontrolled water losses from the boiler.

The water to be bled in relation to the steam produced is:

$$P = \frac{M}{(S-M) \cdot Q} \cdot Q$$

P = 200 I/h.

Using the calibrated scale, the lever allows exact adjustment of the measuring nozzle.

We shall set the lever at the position that allows us to remove a volume of water (P) at a differential pressure. Differential pressure = Working pressure - (Back pressure + Load losses). Continuous desalting is achieved with adjustment values of 0 to 35.

The position "Direct bleeding" corresponds to the section of nozzle that is totally open and allows complete bleeding in a few seconds. In this case, the volume is aproximately three times greater than that for 35 on the scale.

The combination of the Continuous desalting valve* and the Blowdown valve for bleeding dirt and sludge* is essential for optimizing the boiler's

efficiency, and include its maximum security and availability. Neither of them can be replaced with others not designed for this specific application.

Their moderate cost is depreciated in the short term * (See brochure for Models 560).

(See brochure for Models 260, 260-A and 460).

Samples water-cooled

For steam boilers

Model 560 DRM-1

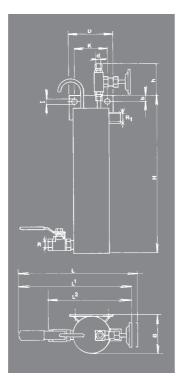
Efficient monitoring of the purging of salts, dirt and sludge in a steam boiler requires regular analysis of the water in order to verify that its parameters are within the ideal levels af salinity and alkalinity demanded by law.

All the Continuous desalting valve (Mod. 560 and 560-A) are provided with taps for obtaining samples. As the water is extracted continuously $30 \div 50$ mm. below the minimum level, the collection level is ideal and does not interfere with the control and level regulation devices.

Direct sampling is incorrect:

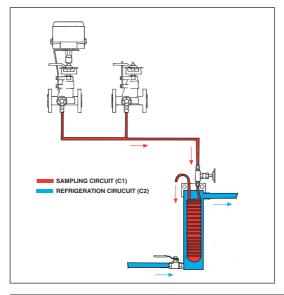
- Losses by expansion increase the density of the water and falsify results.
- There is an obvious physical risk involved.

The basic premise for conducting analyses correctly is to bring the samples from the tap of the Continuous desalting valve to the Samples water-cooled DRM-1, and bring them down to between 24 ÷ 26°C.


Specifications

- The Samples water-cooled DRM-1 consists of:
- Needle valve Mod. 147 of 1/4", with a simple box joint for connecting to the 6/8 mm Ø tube from the sample-taking faucet.
- 2 One-piece coil with collection nozzle, with no welding, and cold-bent.
- Ball valve Mod. 999 of 1/2", for entry of coolant water to the device.
- 4 Wrapper cylinder with cooling water inlet and outlet.
- Entirely Stainless steel (DIN-1.4401) (AISI-316)
- Finished: Glass-ball blast.
- Simplicity of construction.
- Easy to connect.
- Each of the components is numbered, registered, and checked. If prior request is made a certificates of materials, batch and tests will be supplied.

IMPORTANT


Depending on demand:

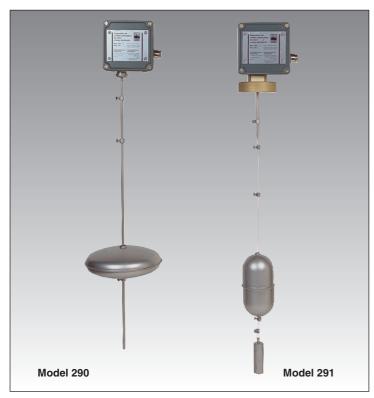
— Other thicknesses, connections, materials, lengths of body and coil.

MODEL	DRM-1
R	1/2"
R ₁	1/2"
CONNECTIONS	Whitworth gas-tight cylindrical female thread ISO 228/1 1978 (DIN-259)
Н	390
h	95
L	313
L ¹	307
L ²	235
d	Connection pipe Ø 6/8
В	89
D	105
K	80
I	12
b	15
DRILLS N°.	2
WEIGHT IN Kgs.	3,87
CODE	2102-560.0022

	SAMPLING CIRCUIT C1 REFRIGERATION CIRCUIT C2	MAX. PRESSURE IN bar	140
		MAX. TEMP. IN °C	340
OPERATING		VOLUME IN ℓ .	0,16
CONDITIONS		MAX. PRESSURE IN bar	10
		MAX. TEMP. IN °C	As required to bring the samples down to 24 ÷ 26°C
		VOLUME IN ℓ .	1,48

Operation

- 1- Open the coolant water entry valve.
- 2- Gradually open the sampling circuit interruption valve until a significant sample between 24 ÷ 26°C is obtained.
- 3- Close the sampling circuit interruption valve.
- 4- Close the coolant water entry valve.



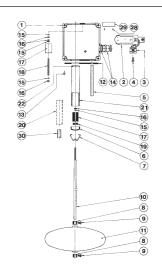
Sliding buoy type automatic level controller

Bracket connection
Thread connection

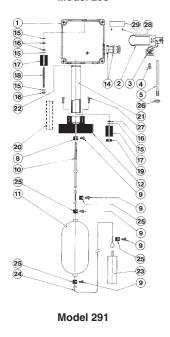
Model 290 Model 291

This device guarantees automatic, safe and reliable control, regulation and signalling of the level of liquids in; wells, tanks, cisterns, etc.

Specifications

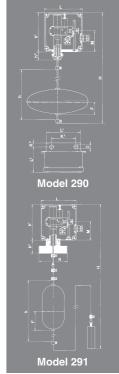

- Materials carefully selected for their resistance to wear and tear, temperature and corrosion.
- Simplicity of construction ensuring minimum maintenance.
- The area of connectors, terminals, magnetic switches, etc., housed in a box made of isolating temperature resistant material which prevents the entry of dust or dirt, etc. IP-65 protection.
- The components of the magnetic switch are rigorously selected to guarantee long life and total operating safety.
- Silver alloy breakers.
- Easy to connect.
- Adjustment of operating points using end stops.
- All of the equipment and the switches have been thoroughly tried and tested.
- Each of the components is numbered, registered and checked. If prior request is made a certificates of materials, batch and will be supplied.

IMPORTANT


If this equipment is connected to vessels with turbulent fluids they must be supplied with the corresponding breakwater.

Depending on demand:

- Possibility of manufacture in other types of material, for use in special working conditions (high temperatures, fluids, etc.).
- Other connections and fluctuation length.
- Stainless steel buoy (DIN-1.4401) (AISI-316) with coating of Epoxy, PTFE (Teflón), Chemical nickel, etc.
- Other sizes of buoy.


Model 290

N°. PIECE	PIECE	MATERIAL				
IN . PIECE	FIEGE	MODEL 290 MODEL 291		EL 291		
1 2 3 4 5 6 7 8,25 9,27 10 11 12 13,28 14 15 16,26 17 18 19 20 21,30 22	Box Magnetic switch Block Block screw Switch fastening axis Cap end stop Cap securing clip Buffer Stop-screw Guide road Buoy (1) Bracket Rivets Gland Washer Nut Magnet Dowel Spacer Spring Case Case cover	Aluminium (ASTM B 85 y B 179) Model 262 Bakelite S. steel (DIN-1.4401) (AISI-316) S. steel (DIN-1.4301) (AISI-304) S. steel (DIN-1.4301) (AISI-304) S. steel (DIN-1.4301) (AISI-302) S. steel (DIN-1.4401) (AISI-316) S. steel (DIN-1.4401) (AISI-304) Aluminium (AIMg5) Brass (DIN-1.7660 CuZn40Pb2) S. steel (DIN-1.4401) (AISI-316) S. steel (DIN-1.4401) (AISI-316) Alnico - 500 S. steel (DIN-1.4301) (AISI-304) S. steel (DIN-1.4300) (AISI-303) S. steel (DIN-1.4301) (AISI-304) S. steel (DIN-1.4301) (AISI-304) S. steel (DIN-1.4301) (AISI-304) S. steel (DIN-1.4301) (AISI-304)	Model Bakeli S. ster S. ster S. ster S. ster S. ster Brass Alumir Brass S. ster Alnico S. ster	262 te el (DIN-1.4 el (DIN-1.4 el (DIN-1.4 el (DIN-1.4 el (DIN-1.4 el (DIN-1.76) el (DIN-1.76) el (DIN-1.76) el (DIN-1.4	50 CuZn40 401) (AISI 401) (AISI 301) (AISI 305) (AISI 300) (AISI 301) (AISI 301) (AISI	-316) -304) -316) -316) -316) -316) -316) -316) -316) -304) -303) -302) -304) -304)
23 24	Weight Guide wire	_			401) (AISI	
29	Characteristic plate	— Aluminium	S. steel (DIN-1.4300) (AISI-302) Aluminium		-302)	
DN		Bracket with 2 screws M.8x	2 1/2"			
PN		_		PMS.	19 bar	
	PRESSURE IN bar (2)	<u> </u>	19,0	17,1	14,8	13,3
OPERATING	MAXIMUN TEMP. IN °C (2)	150	20	50	100	150
CONDITIONS	MINIMUM TEMP. IN °C	0	0 -60 (3)			
	MAX. VISCOSITY IN Cps	500	280			

- (1) See brochure for Model 152 Ø150x60 and Ø60x120 slidings.
 (2) For higher pressures and temperatures see our technical department.
 (3) As long as the equipment is free of humidity.

MODEL		290	291	
R		_	2 1/2"	
CONNECTION		2 screws M.8x	Whitworth gas-tight male thread cylindrical ISO 228/1 1978 (DIN-259)	
Н	STANDARD	630	3320	
П	MAXIMUM	_	30320	
h	STANDARD	495	3000	
(LEVEL FLUCTUATION)	MAXIMUM	_	30000	
h	1	98,5	95,5	
h		20	35	
N (MAXI)	Л мим)	52	49	
MAX. N°. OF SWITCHES		1	1	
BUOY		Ø 150 x 60	Ø 60 x 120	
F (FLOATING LEVEL IN WATER)		28	54	
L		95,5	95,5	
L	1	85	_	
L	2	65	_	
K	1	59	_	
K	2	10	_	
I		9	_	
DRILLS N°.		2	_	
WEIGHT IN Kgs.		1,08	1,65	
CODE		2104-290.0002	2104 - 291.5222	

Magnetic switch

Model 262

Specifications

Electrical characteristics: — Voltage: 220 V.A.C.

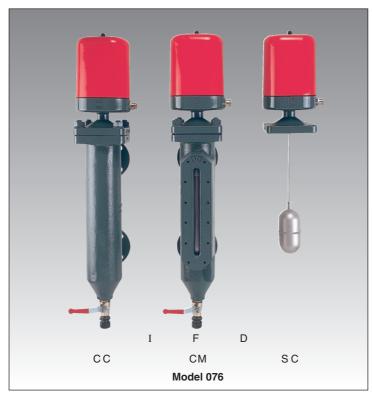
- Current: 1 A.

Magnetic characteristics: — Material: ALNICO - 1500.

- Residual induction (Br): 8500 / 8600 G. — Coercive force (Hc): 1400 / 1500 Oe.

— Energy index (B-H) maximum: 4,2.

1	MODEL	262
1	R	M.4
	n	Metric male thread ISO (DIN-13) 1973
	Н	27
	h	23
	h ¹	5
	L ₁	70
	L ₂	43
	WEIGHT IN Kgs.	0,041
	CODE	2104 - 262.0000

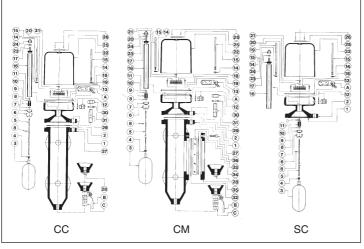


Buoy type automatic level controller

Model 076

This device guarantees automatic, safe and reliable control, regulation and signalling of the level of liquids in; steam boilers, pressurised vessels, preheaters, processes, etc.

Specifications


- Materials carefully selected for their resistance to wear and tear, temperature and corrosion.
- Simplicity of construction ensuring minimum maintenance.
- The area of connectors, terminals, magnetic switches, etc., is attached to a totally tightness base in the area in contact with the fluid. A cover of isolating temperature resistant material prevents the entry of dust or dirt, etc. IP-65 protection.
- The components of the magnetic switch are rigorously selected to guarantee long life and total operating sefety.
- Silver alloy breakers.
- Easy to connect and adjust the operating points.
- Models with multi-slatted polyprismatic reflector sight glass allow visual level readings, making a clear difference between the liquid and gas stages of the fluids. The sight glass is made of boron silicate and is designed so that if it accidentally breaks it will not fall out in pieces.
- All of the equipment and the switches have been thoroughly tried and tested.
- Each of the components is numbered, registered and checked. If prior request is made a certificates of materials, batch and tests will be supplied.

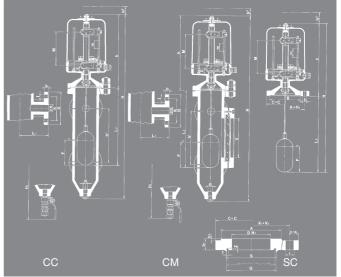
IMPORTANT

In steam boilers and other vessels with precipitating fluids we recommend adding a blowoff valve to the equipment, Mod. 999, 1/2" joined to the waste pipe for periodic release of sludge. As a minimum a $2 \div 3$ second release must be performed every 8 hours. If the 076-SC Model is connected to steam boilers or to vessels with turbulent fluids they must be supplied with the corresponding breakwater.

Depending on demand:

- Possibility of manufacture in other types of material, for use in special working conditions (high temperatures, fluids, etc.).
- Other connections and body length.
- Stainless steel buoy (DIN-1.4401) (AISI-316) with coating of Epoxy, PTFE (Teflón), Chemical nickel, etc.
- Other sizes of buoy.

MODEL	C	C	СМ		SC		
DN	2	!5	25		_	_	
CONNECTION	-	_	_	<u> </u>		M.16x40	
h ¹	190	250	190	250	_	_	
Н	655	715	655	715	536	596	
H ₁	790	840	790	840	_	_	
(MAX. LEVEL FLUCTUATION)	12	20	120		120		
(MIN. DISTANCE BETWEEN SWITCHES) (1)		0		30		0	
(MINIMUM)		25		25		5	
MAX. N°. OF SWITCHES (2)		5		5		5	
h ²		60		30		60	
h		62		32		32	
L2	312	372	312	372	312	372	
L1	100	100	100	100			
BUOY		x 120		x 120	Ø 60		
(FLOATING LEVEL IN WATER)	8	7 I		7 I n°. vi	8	7	
REFLECTION GLASS				N°. VI 250 x 34 x 17			
V	-	— ′O"	140	225	-		
R		1/2" 1/2"		_	_		
Ш <u>88</u> D		Whitworth gas-tight cylindrical female thread ISO 228/1 1987 (DIN-259) 115 115		_	_		
D K I I I I I I I I I I I I I I I I I I	85			15 15			
AN I		14		14			
р В		16		16		_	
S DILLS N°.		<u> </u>		<u> </u>	_		
5 C×C			_		130 x 130		
Ш					98,3 x 98,3		
O I ₁	_				18		
ОВ	_	_	_	_	1.	10	
DN ₁	-	_	_	_	7	0	
K ₁ x K ₁	_	_	_	_	98,3	x 98,3	
iii	-	_	_	_	M.	16	
ر r	-	_	_	_	Metric female thread	ISO (DIN-13) 1973	
T	-				2		
<u>Б</u>	-	-	-	-	3		
り N°. OF THREADS	_					4	
© N°. OF THREADS C x C A S T			_		130		
<u> </u>	_		-			9,8	
S S			_			0	
						,5	
G N					88,9x3,2 (
						3	
WEIGHT IN Kgs.	14,40	17,40	16,30	22,00	4,	60	
CODE VIEWER (3)			F D I	F D I			
2104-076.	51061	51062	51063 51064 51065	51066 51067 51068	50061	50062	


- (1) Attached to the same mounting.
 (2) The maximum number of switches is 5 for each of the two mountings.
- The buoy type automatic level controller Model 076 is supplied with no Model 262 magnetic switches. All switches requested are supplied separately.

 (3) F = Front viewer. D = Right viewer. I = Left viewer.

	N°. PIECE		PIECE	MATERIAL					
	1	Ва	se joint	Klingerit cardboard					
	2 Base			S. steel (DIN-1.4408) (ASTM A351 CF8M)					
	3	Bu	oy (1)	S. steel (DIN-1.4401) (AISI-316)					
	4	Cc	nnector	S. steel (D	IN-1.4401)	(AISI-316)			
	5	Gι	iide rod	S. steel (D	IN-1.4401)	(AISI-316)			
	6	Ca	p securing clip	S. steel (D	IN-1.4300)	(AISI-302)			
	7		p end stop	S. steel (D	IN-1.4301)	(AISI-304)			
	8		ffer		IN-1.4301)	(AISI-304)			
	9	Ma	agnet	Alnico - 50	00				
	10,20		asher	(IN-1.4401)	(/			
	11,14,23	Nυ			IN-1.4401)				
	12	Gl	and	Brass (DII	N-1.7660 Cเ	uZn40Pb2)			
	13	0-	ring gasket	Fluorelast	omer (Vitón)			
	15	Sv	vitch mounting	S. steel (D	IN-1.4305)	(AISI-303)			
	16	Gι	iide tube		IN-1.4401)				
	17	Ca			IN-1.4301)	(AISI-304)			
	18	Te	rminal block	Bakelite					
	19,21		rew	S. steel (DIN-1.4401) (AISI-316)					
	22	Ca			n (DIN-3.238	31.01 G-AIS	Si10Mg)		
	24	Ca	•	Plastic					
	25	Pla	ate	Aluminium					
	26		vets	Aluminium	. 0,				
	27		dy		(DIN-0.6025				
	28	Ca			el (DIN-1.118				
	29	Stı		Casb. steel (DIN-1.1181 Ck-35) Carb. steel (DIN-1.1141 Ck-15)					
	30	Νu							
	31		asher		el (DIN-1.114	41 Ck-15)			
	32		oupling	Klingerit c					
	33		ystal 	Boron-Sili					
	34		oupling	Klingerit oilit cardboard					
	35		ght glass cover	Cast iron (DIN-0.6025 GG-25)					
	36 Cover screws		Cast steel (DIN-1.1191 Ck-45)						
			DN		2	5 (2)			
	PN				1	6			
	OPERATIN	IG.	PRESSURE IN bar	13,3	11,9	10,9	10,4		
	CONDITIO		MAX. TEMP. IN °C	150	200	250	300		
MIN. TEMP. IN °C -10 (3)									

- (1) See brochure for Model 152 Ø60x120.
 (2) In Model 076-SC the coupling is made with 4 M.16x40 screws.
 (3) As long as the equipment is free of humidity. Under the same conditions Model 076-SC can work up to -60°C.
- (A) The buoy type automatic level controller Model 076 is supplied with no Model 262 magnetic switches.
- All switches requested are supplied separately.

 (B) (C) The blowoff valve and the waste water pipe joint are options on request.

Magnetic switch Model 262

Specifications

Electrical characteristics: — Voltage: 220 V.A.C.

- Current: 1 A.

Magnetic characteristics: - Material: ALNICO - 1500.

- Residual induction (Br): 8500 / 8600 G.

— Coercive force (Hc): 1400 / 1500 Oe.

- Energy index (B-H) maximum: 4,2.

MODEL	262
R	M.4
n	Metric male thread ISO (DIN-13) de 1973
Н	27
h	23
h ¹	5
L ₁	70
L ₂	43
WEIGHT IN Kgs.	0,041
CODE	2104 - 262.0000

Electrode based electronic level controller

For steam boilers

Model 176

This device guarantees a safe and reliable control, regulation and electronic signalling of the level of electrically conducting liquids in; steam and hot water boilers, autoclaves, preheaters, pressure vessels, feedwater and condensates tanks, processes, etc.

Specifications

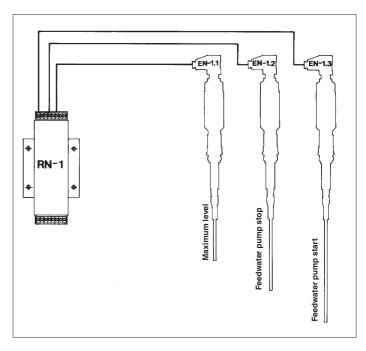
- The electrode design is technically perfect, being fully tightness in steam, with several sealing points.
- Simplicity of construction, eliminating the need for moving mechanical parts, which leads to minimum maintenance.
- Materials carefully selected for their resistance to wear, temperature and pressure conditions.
- Due to solid construction the electrodes can operate in critical temperature and corrosion.
- Ease of connection and adjustment of operating points. Being a fixed installation greatly inhibits any type of manipulation.
- High reliability and safety which allows operation of steam boilers without permanent supervision.
- Through the elimination of unnecessary equipment and the direct installation of the electrode in the boiler body a maintenance free installation is obtained, with the corresponding financial savings.
- Centralized control and possibility of executing complex regulation and control.
- All controllers and electrodes are rigorously tested and verified.
- Each of the components is numbered, registered and checked. If prior request is made a certificates of materials, batch and tests will be supplied.

Level controller. RN-1 Level electrode. EN-1

An RN-1 level controller together with two EN-1 level electrodes controls the operation of the boiler feedwater pumps, and consequently the level of the water in the boiler.

In installations without constant preventative maintenance we recommend the installation of a third EN-1 level electrode, associated with the same RN-1 level controller, whose function is to cut-off the feedwater pump if the maximum allowed level in the boiler is exceeded.

Operating principles


The operation of the RN-1 level controller is based on the measurement by conductivity principle. When the probe of the EN-1 level electrode is submerged or out of the water, the bridging circuit of the switching amplifier is made or broken respectively. The signal is amplified and is used to energize a relay.

The circuits for water level control and maximum water level are symmetrical and totally separated. The switching relays of each circuit are independent, but with a common power supply.

In order to avoid disturbances to the control system caused by waves in the boiler water, the power signals from the RN-1 level controller have a built in 10 second delay. This means that the motors and connection elements are protected from spurious interruptions.

Operation

When the level of water falls below the normal operating level, the probe of the EN-1.2 level electrode (feedwater pump stop) is exposed followed by that of the EN-1.3 (feedwater pump start). Automatically, the RN-1 level controller switching relay is energized and the feedwater pump is started. The green lamp, which indicates that the feedwater pump is running, is lit up. The probe of the EN-1.3 level electrode (feedwater pump start) is gradually submerged along with that of EN-1.2 (feedwater pump stop). When the EN-1.2 level electrode probe (feedwater pump stop) is submerged the switching relay is deenergised, the green lamp switched off, and the pump shut down. If, due to failure, the pump continues running until the EN-1.1 level electrode probe is submerged (maximum level) the second switching relay on the RN-1 level controller is energized, the red lamp indicating maximum level is lit up, and the feedwater pump is disconnected.

Maintenance

The RN-1 level controller does not require daily checking. However a functional check should be carried out periodically. Check the electrode probe every six months and clean thoroughly.

After every change of controllers or electrodes, the correct operation of the controls should be checked before putting the boiler in service.

Breakdown

- 1- The feedwater pump does not start and the RS-1 minimum level safety controller indicates insufficient water:
 - Check the state of the thermal protection relay on the feedwater pump motor.
 - Check the supply voltages on the RN-1 level controller.
 - Check the connections between controller and electrode (RN-1 / EN-1.3).
 - Check the RN-1 level controller fuse (M.250/0,10A).
 - The probe on the EN-1.3 level electrode for feedwater pump start-up is too long.
 - The probe on the EN-1.2 level electrode for feedwater pump stop is not earthed.
 - Change the RN-1 level controller.
- 2- The feedwater pump does not stop and the boiler is over-filled:
 - Check the controller-electrode connections (RN-1/EN-1.2).
 - The probe on the EN-1.2 level electrode for feedwater pump stop is too short.
 - Change the RN-1 level controller.

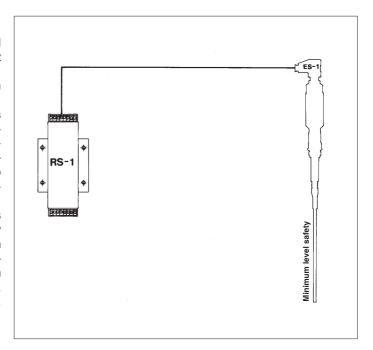
VYC controllers and electrodes are officially approved by several international organisations and must be repaired only in our workshops.

Minimum level safety controller. RS-1 Minimum level safety electrode. ES-1

The RS-1 minimum level safety controller, together with the ES-1 minimum level safety electrode, facilitates the measurement of minimum water level in the boiler.

If a minimum level is detected, the failure signal is automatically activated and the burner is disconnected. The controller and the electrode are equipped with devices for selfchecking and manual checking, which ensures reliable and safe operation. Any number of RS-1 minimum level safety controllers, each with its own ES-1 minimum level safety electrode, can be installed to obtain the required level of protection.

Operating principles


The operation of the RS-1 minimum level safety controller is based on the difference in conductivity of water and steam. The ES-1 minimum level safety electrode consists of a water measuring probe and a steam compensating ring. These are concentrically mounted and separated by special insulating covers. When the water measuring probe is out of the water the bridging circuit in the switching amplifier is lost. The signal is amplified and desenergizes a relay which activates the failure signal and disconnects the burner. The RS-1 minimum level safety controller has two channels and is equipped with a self-checking device. At a given switching frequency, the device carries out a periodic checking of the electronic circuitry and the connection between the electrode and the controller. This self-checking is generated by simulating a loss of water. In order to avoid disturbances to the safety system, caused by waves in the boiler water, the signal generated by the RS-1 minimum level safety controller has a built in 5 second delay. This prevents shutdowns caused by spurious failures.

Operation

The green operation lamp is on when the RS-1 minimum level safety controller is energized indicating that there is sufficient water in the boiler.

The RS-1 minimum level safety controller is equipped with buttons for manual checking:

- 1-Checking electrode (measuring probe): When this button is pressed for 5 seconds the electronic circuit and the connection between controller and electrode are checked. The simulation of water loss caused by cutting the voltage to the electrode causes a shutdown of the relay. The operation lamp goes off, the failure signal is activated and the burner is disconnected.
- 2-Isolation checking: When this button is pressed for 5 seconds the isolation is checked. The isolation of electronic circuitry and the steam-water compensation tube of the ES-1 minimum level safety electrode is checked, i.e. that there is no short-circuit or leakage to earth. The simulation of loss of isolation causes a shutdown of the relay. The operation lamp goes off, the failure signal is activated and the burner is disconnected.

Maintenance

The RS-1 minimum level safety controller, as it is self-checking, only requires a 6 monthly inspection by a qualified technician. We recommend carrying out the above mentioned manual checks once or twice per week.

Check the electrode measuring probe every 6 months and clean thoroughly.

After every change of controller or electrode, the correct functioning of the controls should be checked before putting the boiler back in service.

Breakdown

The RS-1 minimum level safety controller is an electronic device which is not subject to any mechanical wear or breakage. In the unlikely case of breakdown:

- Check the boiler water level.
- Check the RS-1 minimum level safety controller fuse (M.250/0,20A).
- Check the connection between controller and electrode (RS-1/ES-1).
- Change the RS-1 minimum level safety controller. If the failure continues the failure is caused by the ES-1 minimum level safety electrode.

VYC controllers and electrodes are officially approved by several international organisations and must be repaired only in our workshops.

Electrodes

Connection: Whitworth gas-tight cylindrical male thread ISO 228/1 1978 (DIN-259) 1". Maximum operating temperature: 238°C. Maximum operating pressure: 32 bar. Protection: IP-65.

MODEL	EN-1	ES-1
R	1"	1"
Н	952	952
H ¹	700	700
h ¹	252	252
h ²	153	153
h ³	547	547
L	53	53
WEIGHT IN Kgs.	1,09	1,12
CODE 2104 - 176.	71021	71022

2104 - 1/6.

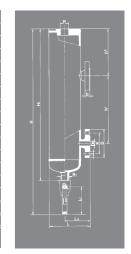
Electrode connection collector

As the body of the boiler cannot be perforated, the electrode connection collector allows the boiler to be equipped with an electrode based electronic level control device or the substitution of an old buoy type automatic level controller.

Nominal pressure: PN-40.

Allowable pressures and temperatures according to DIN-2401. Sheet 2.

Flange connection: DN-25 (DIN-2545).


Electrode connection: Whitworth gas-tigth cylindrical female thread ISO 228/1 1978

(DIN-259) 1".

We recommend adding a blowoff valve to the equipment, Mod. 999, 1/2" joined to the waste pipe for periodic release of sludge. As a minimum a $2 \div 3$ second release must be performed every 8 hours.

If an electrode connection is to be taken out of service, the necessary plugs and seals can be supplied.

DN	25	25	25	25
R	1"	1"	1"	1"
h ¹ (1)	190	190	250	250
N°. OF ELECTRODE CONNECTIONS		3	1	3
Н	650	650	680	680
H ₁	529	529	559	559
h ²	205	205	175	175
L	150	150	150	150
R ₁	1/2"	1/2"	1/2"	1/2"
L ₁	100	100	100	100
L ₂	93	93	93	93
D	115	115	115	115
K	85	85	85	85
I	14	14	14	14
b	18	18	18	18
DRILLS N°.	4	4	4	4
WEIGHT IN Kgs.	10,90	10,70	11,50	11,30
CODE 2104 - 176.	83441	83442	83443	83444
(1) Con he manufactured wi		hatusan aantua	of flamman	

(1) Can be manufactured with other distances between centres of flanges.

Controllers

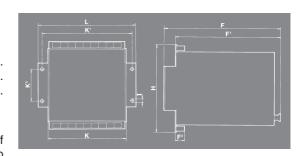
Voltage: 220 V.A.C. ± 10% 50/60 Hz.

EN-1

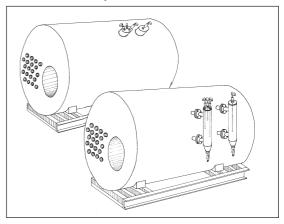
Electrical consumption: Approximately 6 VA. (RN-1), 10 VA. (RS-1).

Relay contact: 250 V., 5 A.

Electrode circuit voltage: Galvanically isolated from mains. 7V. AC. Output relays delay on deenergising: 10 seconds (RN-1), 5 seconds (RS-1). Minimum operating conductivity: 3 $\mu s/cm$ (RN-1), 0,05 \div 1 $\mu s/cm$ (RS-1). Ambient temperature: 0 to 55°C.


ES-1

Controller protection: IP-10.


The controllers are supplied in an individual 19" sub-rack DIN-41494. If specified, we can supply from 2 to 5 controllers in the same sub-rack, and also include the desalting controller RD-1 in the assembly. (See brochure Model

560-A).

MODEL	DN 4	D0.4		19" sub-racl	k for controll	er mounting	
MODEL	RN-1	RS-1	1	2	3	4	5
Н	157	157	157	157	157	157	157
F	210	210	210	210	210	210	210
F ¹	189	189	189	189	189	189	189
F ²	17	17	17	17	17	17	17
L	86	86	86	132	177	223	269
K	52	52	52	98	143	189	235
K ¹	72	72	72	118	163	209	255
K ²	57	57	57	57	57	57	57
I	6	6	6	6	6	6	6
WEIGHT IN Kgs.	0,90	0,90	0,32	0,37	0,43	0,48	0,53
CODE 2104 - 176.	0001	0002	00001	00002	00003	00004	00005

Installation examples



Capacitive electrode based electronic level controller

For steam boilers Model 276

This device, when combined with a motorised valve, ensures the continuous control and display of the level, with a high and low level alarm for; steam and hot water boilers, autoclaves, pre-heaters, pressured vessels, condensation and feedwater tanks, processing, etc.

Applicable to steam boilers that meet TRD-602 and TRD-604.

Features

- The design of the electrodes is technically perfect, achieving total steam-proofing with several sealing points.
- Simple construction eliminating mechanical moving parts, so they require minimum maintenance.
- Materials carefully selected for their resistance to wear, temperature and corrosion.
- Given their solid construction, the electrodes can work under critical pressure and temperature conditions.
- Very easy to connect and adjust for the control points. Since it is a fixed installation it makes any kind of handling much more difficult.
- High level of reliability and safety which allows them, in steam boilers, to work without permanent surveillance.
- By removing unnecessary support equipment and by installing the electrodes directly into the boiler, it achieves a completely maintenance-free control system, with the resulting cash savings.
- Centralised control and possibility of performing complex controls and adjustments.
- All the control units and electrodes are strictly tested and checked.
- Each one of the components is given a serial number, registered and controlled. If requested beforehand, the equipment will come with the certificates for materials, casting and trials.

Continuous feed control, RAC-1

It is an electronic control with a microprocessor for continuous level adjustment in combination with an EAC-1 continuous feed electrode and a motorised valve with a potentiometer for adjusting the flow rate.

Working principle

The electronic level control device is based on the capacitive measuring principle. The electrode rod and the wall of the container for measuring form a condenser.

The dielectric is air or the corresponding product. In electrically conductive products, the condenser is formed by the product and the electrode for which the insulating cover acts as a dielectric. Thus the capacity of the condenser depends on the level present in the electrode.

This capacity is measured by applying a high frequency and constant voltage to the electrodes.

The high frequency current that passes through the condenser is proportional to the capacity.

This current is transformed into a signal that is proportional to the level, which will then work an electrical element.

Installation and start-up

We base this on the assumption that the container to be controlled is a steam boiler. The process may be applied to other types of equipment.

1- Electrical connection.

A screened cable measuring 3 x 1 mm² with a maximum length of 100 m should be used for connecting the electrode end the potentiometer for the motorised valve. For working the valve, it may be connected directly to the adjuster with a voltage of 250 V, 3 A. If the power absorbed is greater, auxiliary relays must be installed between them.

2- Adjustments for the measurement range.

When switching on the control unit check that position C is displayed on the screen 4. Otherwise pressr F several times until it is displayed.

A Adjusting the level to 0%.

Fill the boiler with supply water until the water appears in the bottom part of the level box glass. Turn the potentiometer (5) until on the display (9) we achieve a digital readout of 0%.

B Adjusting the level to 100%.

Keep filling the boiler until the water reaches the top part of the level box glass. Turn the potentiometer (16) until 100% appears on the display (9).

Empty the boiler and repeat this operation then readjust, if necessary, the measurement range.

3- Selecting the minimum level and maximum levels.

Within the measurement range from 0 to 100%, you can adjust it by pressing \boxed{P} down for over two seconds until 2 appears on the screen $\boxed{4}$.

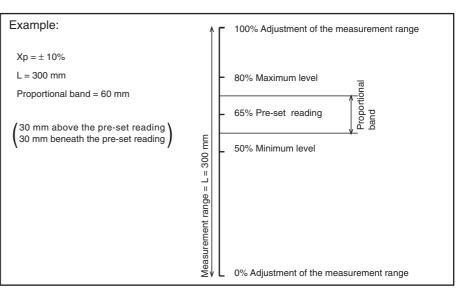
A Selecting the minimum level.

With the push-button \boxed{F} select 4 on the screen $\boxed{4}$. With $\boxed{\blacktriangle}$ or $\boxed{\blacktriangledown}$ define, in percentage terms, the point for the minimum alarm in the display $\boxed{9}$.

B Selecting the maximum level.

With the push-button $\boxed{\mathsf{F}}$ select 5 on the screen $\boxed{4}$. With $\boxed{\blacktriangle}$ or $\boxed{\blacktriangledown}$ define, in percentage terms, the point for the maximum alarm in the display $\boxed{9}$. Press $\boxed{\mathsf{F}}$.

4- Selecting the pre-set adjustment reading.


You must define within the measurement range by entering a reading of between 0 and 100%. Press P down for over two seconds and 2 will appear on the screen 4. With a or define, in percentage terms, the reading selected in the display 9.

5- Selecting the reading for the proportional band Xp %.

The proportional reading Xp determines the maximum and minimum percentage deviation for the real level with respect to the pre-set adjustment reading, depending on the working conditions for the boiler.

In order to obtain an adjustment without sudden changes, the Xp reading must be as high as possible.

Press P down for over 2 seconds and 2 will appear on the screen 4. With F display 3 on the screen 4. Using a or define the desired Xp reading from 0 to 50% of the proportional band.

Continuous feed electrode, EAC-1

The electrode is a measuring probe that must be handled with the utmost care. Avoid contact, in particular with the measuring area, which might alter the sealing points.

Installing the electrode

Before installing the electrode, clean the polytetrafluorethylene cover (PTFE) using a clean and slightly damp cloth. The cover must be completely free from oil or grease. After putting the seal into place, screw in the electrode manually and tighten with a wrench.

Caution: Only stainless steel joints may be used!.

Use a new joint for each new assembly!.

The part above the hexagon must not be included in the insulation for the boiler. The electrode can be installed in a vertical or sloping position, with the measuring cover facing downwards. In the sloped position with respect to the vertical one, it should not exceed an angle of 80°. The measuring cover must be completely parallel to the metal wall of the vessel, collector, breakwater or, if missing, a metal rod to form a condenser.

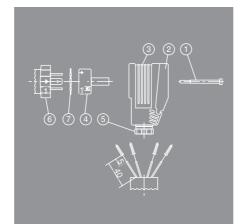
Connecting the electrode

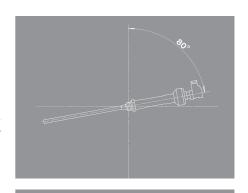
Unscrew the bolt for attaching the connector cover 1, remove the connector cover 2, the connector body 3 and unplug the contact holder 4. Pass the cable through the gland box 5, attaching a wire to connections Nos. 1, 2 and the third one to the earth point + in the contact holder 4. Check the connections, introduce the contact holder 4 into the socket 6 with its pertinent joint 7. Place the connector body 3, the connector cover 2 and tighten the connector cover bolt 1.

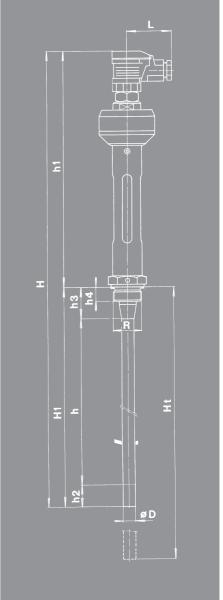
Caution!: Fit joint (7) correctly!.

Connector body (3) can be oriented when necessary!.

Start-up


It is well known that polytetrafluorethylene (PTFE) dilates at high temperature. Make a check on each electrode at start-up and after any handling. Only if there is a satisfactory result should the electrodes be installed in the boiler and then turn it on. **Maintenance**


We recommend that thorough cleaning of the electrode should be performed according to the working conditions. Though we do recommend that the gap between each cleaning should not be over 6 months.


Problems

Any leak through the connecting joint can usually be solved simply by tightening it. If this is not so, replace the joint with a new one.

Connection: 1" Whitworth Male gas cylinder pin thread, ISO 228/1 from 1978 (DIN-259) . Maximum service temperature: 238°C. Maximum service pressure: 32 bar.Protection: IP-65.

EFFECTIVE FIELD OF MEASUREMENT h	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500
R	1"	1"	1"	1"	1"	1"	1"	1"	1"	1"	1"	1"	1"
Н	650	750	850	950	1050	1150	1250	1350	1450	1550	1650	1750	1850
H ¹	364	464	564	664	764	864	964	1064	1164	1264	1364	1464	1564
h ¹	286	286	286	286	286	286	286	286	286	286	286	286	286
h ²	26	26	26	26	26	26	26	26	26	26	26	26	26
h ³	38	38	38	38	38	38	38	38	38	38	38	38	38
h ⁴	17	17	17	17	17	17	17	17	17	17	17	17	17
Ht 238°C	374	479	584	689	793	898	1003	1108	1213	1318	1422	1527	1632
D	15	15	15	15	15	15	15	15	15	15	15	15	15
L	53	53	53	53	53	53	53	53	53	53	53	53	53
WEIGHT IN Kgs.	0,85	0,90	0,95	1,01	1,07	1,12	1,18	1,23	1,28	1,34	1,39	1,45	1,50
CODE 2104 - 276.	71001	71002	71003	71004	71005	71006	71007	71008	71009	71010	71011	71012	71013

Examples for installation

6- Adjusting the motorised valve.

Press F down until reaching position 1 on the screen (4).

Check that the control is in the manual working position (pilot light (8) off).

In order to change the position, press down AUTO for over two seconds.

A Closed position. Close the valve manually with the push-button ▼. Turn the potentiometer (1) until achieving the digital readout of 0% on the display (9). B Open position.

Open the valve manually with the push-button . Turn the potentiometer (13) until achieving the digital readout of 100% on the display (9). Repeat this operation checking and readjusting, if necessary, the positions of the valve.

7- Selecting the working system.

Press down AUTO for over two seconds.

A Automatic.

Pilot light (8) on.

B Manual

Pilot light (8) off.

8- Displaying the current working status. Press down | P | for over two seconds and 2 will appear on the screen (4). A Motorised valve status.

Press down the key F until leaving the screen (4) in position 1. See display (9). B Percentage status for the water level. Press down the key F until leaving the screen (4) in position 0. See display (9).

9- Summary

DISPLAY	F	F	0 Water level in % 1 Motorised velve position in %									
CONFIGURATION	Р	Keep pre	ressed down for over two seconds									
		F	2 Select pre-set adjustment reading in % 3 Select Xp proportional band reading in Xp % 4 Select minimum level in % 5 Select maximum level in %									
SELECTION	AUTO MAN	Keep pre	ep pressed down for over two seconds									

IMPORTANT!

During servicing conditions, we recommend leaving the control on the display in the current working status according to point 8.

VYC controls and electrodes are officially recognised by several international bodies and must only be repaired at our workshops.

Features

Control unit: With front, membrane-covered push-buttons and potentiometers for adjustment at the rear.

Voltage: 220 V.A.C. ± 10% 50/60 Hz.

Electrical consumption: 8 VA.

Fuses: 2,5 Amp. for protecting the switch contacts (SV-, SV+, MIN, MAX). Control for motorised valve: Two contacts free from potential (SV- and SV+).

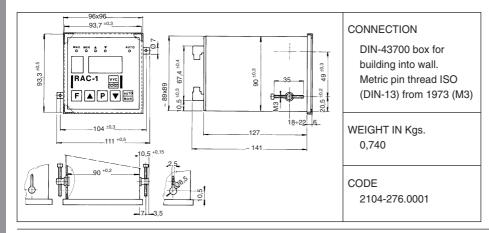
MIN and MAX level alarm: Using contacts free from potential adjustable for the whole measurement range of the electrode.

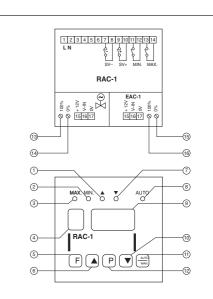
Load for contacts: 250 V, 3 A.

Current output (Under special demand): 0... 20 m A or 4... 20 m A.

Measurement range: 0 ÷ 100% of the effective measurement field h for the electrode. Measurement range adjustment: By means of the rear potentiometers, adjustment from 0 and 100%.

Proportional band: 0 ÷ 50%.


Control for the proportional range: Using front push-buttons.


Feedback: Potentiometer for replacement inside the motorised valve.

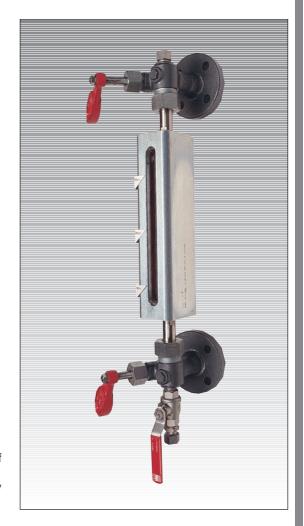
Potentiometer: 1.000 ÷ 20.000 ohms.

Air temperature: 0 to 50°C.

Protection for the control unit: IP - 54.

- (1) Valve open light
- (2) Minimum alarm light
- (3) Maximum alarm light
- (4) Screen
- (5) Push-button F
- ⑥ Push-button ▲
- (7) Valve close light
- 8 Manual/automatic light
- (9) Display
- 10 Push-button ▼
- (1) Push-button A
- 12 Push-button P
- (13) Open valve control potentiometer 100%
- (14) Closed valve control potentiometer 0%
- (15) Level control potentiometer 0%
- 16 Level control potentiometer 100%

Informative brochure, without obligation and subject to our General Sales Conditions



http://www.vycindustrial.com

Round-dowel level indicator

Level gauges Model 666 Level indicator box Model 166-ER

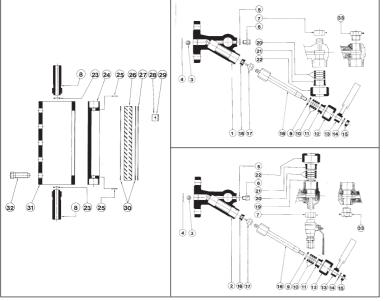
For use in boilers, receivers, cisterns, reservoirs, ...etc., to control the level of liquids, gases and steam.

A multiple-slot polyprismatic viewer allows the level to be optically read, clearly differentiating liquid and gas phases from liquid ones.

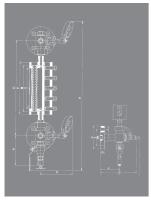
Specifications

- Level gauges with replaceable floating or mobile needle seal and safety ball. Should the viewer break a pressure imbalance is caused which moves the ball onto the seating preventing the fluid from flowing out.
- Gauge activation by means of a fast control lever.
- Indiscriminate gauge assembly with lever on the right or on the left.
- Seals are highly tightness, exceeding the requirements of the DIN-3230 norms. Page 3.
- Gauges with draining plugs allowing crystals and sediments to be thoroughly cleaned out by inserting a Ø 7 mm. rod.
- The round-dowell system, in certain applications, allows the level indicator box to be replaced with a Ø 20 mm. glass tube.
- Level box which can be positioned at any angle in the 360°.
- Maximum, medium and minimum level optical mobile indicators.
- Boron silicate viewer with the special feature that if accidentally broken it is not shed out in pieces.

IMPORTANT


When assembling remove the washer (19) of the gauge operating as the upper one. We advise you to perfect the system with a cleaning valve, 3/8" Mod. 999 connected to the draining tube, in order to check the level indicator and its state of cleanliness periodically

In steam boilers and other receivers with fluids that precipitate carry out at least one $2 \div 3$ second cleaning session at 8 hour intervals.


Depending on demand:

- Possibility of manufacture in other types of material, for use in special working conditions (high temperatures, fluids, etc.).
- Special gaskets.
- Transparent viewers with mica plates, recommendable for temperatures exceeding 250° C.
- Possibility to replace the level indicator box for Ø 20 mm. glass tube and to fit it out with a protective pipe in case that it should be necessary.
- Boxes with special dowels for other distances between flange centres.
- Link boxes for viewing long levels.

N°. PIECE	PIECE									MAT	ΓERIA	۱L								
			CAST	IRON			NOD	ULAR	IRON			C	CAS	ST STE	EL			STAINLE	SS STEEL	-
1,2 3 4 5/23 6 7,33 8 9 10,20 11,21 12,22 13 14 15 16 17 18 19 24 25 26 27 28 29	Body Safety ball Safety ring Coupling Screw Cover*/Cap* Dowel Ring Seal Gland Gland nut Lever Washer Nut Seating Seal Shaft Washer Box Gudgeon Viewer Reglet Rivet Indicator arrow	S. stee S. stee S. stee Carbon S. stee S. stee Graphit Carbon Carbon Carbon S. stee S. stee Carbon Carbon Carbon Carbon Carbon S. stee S. stee Carbon Carbon Carbon Carbon Carbon S. stee S. stee Carbon Carbon Carbon Carbon Carbon Carbon S. stee S. stee Carbon Carbon Carbon Carbon Carbon S. stee S. stee S. stee Carbon Carbon Carbon Carbon Carbon Carbon S. stee S. stee Carbon Carb	steel (DIN steel (DIN r iron (DIN) steel (DIN r iron (DIN) steel (DIN steel (DIN steel (DIN-1.44) (DIN-1.44) (DIN-1.44) (DIN-1.44) (DIN-1.44) steel (DIN s	401) (AISI 300) (AISI 9N-1.1151 (N-1.1181 (N-1.1181 (N-1.1181 (N-1.1191 (N-1	-316) -316) -302) -316) -302) -316) -3202 -3202 -3202 -3203	S. ste S. ste Alum Carbo Carbo S. ste Grap Carbo Carbo Carbo S. ste S. ste S. ste S. ste S. ste S. ste Carbo Carbo Alum	eel (DIN- eel (DIN- inium/Co on steel on steel eel (DIN- hite on steel on steel con steel lar iron on steel	1.4401) 1.4300) ppper (DIN-1.1 1.4305) 1.4401) (DIN-1.1 (DIN-1.1 (DIN-1.1 (DIN-1.1 1.4028) 1.4401) 1.4028) 1.4401) (DIN-1.1 (DIN-1.1 (DIN-1.1 (DIN-1.1 (DIN-1.1 (DIN-1.1 (DIN-1.1 (DIN-1.1	0040 GG (AISI-31 (AISI-30 (AISI-31 (AISI-30 (AISI-31 (AISI-31 (AISI-31 (AISI-31 (AISI-31 (AISI-31 (AISI-31 (AISI-31 (AISI-31 (AISI-31 (AISI-31 (AISI-31	22) 22) 35)* 33) 66) 45) 45) 45) 45) 15) 15) 20) 66) 20) 66) 45)	S. s: s: S.	teel (D teel (INN-1	(DIN-1.1 (DIN-1.1) 1.4305) 1.4401) (DIN-1.1) (DIN-1.1) DIN-0.70 (DIN-1.1) (DIN-1.1) 1.4401) (DIN-1.1) (DIN-1.1) (DIN-1.1) (DIN-1.1) (DIN-1.1) (DIN-1.1)	(AISI-31 (AISI-30 151 Ck-191 Ck-191 Ck-191 Ck-191 Ck-191 Ck-141 Ck-141 Ck-141 Ck-141 Ck-141 Ck-141 Ck-141 Ck-191 C	6) 6) 6) 6) 6) 6) 6) 6) 6) 6)	S. steel (S. ste	DIN-1.440° DIN-1.430(phin-1.440° DIN-1.440°	3) (ASTM A: 1) (AISI-316 0) (AISI-316 1) (AISI-316)))))))))))))))))))
30	Coupling		it cardboa		T =0.0\		erit card		0-	50.0\		gerit ca			0-	-0.0\		cardboard	· (AOTA A	
31 32	Body Screw		steel (DII) steel (DII)		/			,	0570 ST- 1191 Ck-	,				(DIN-1.0 (DIN-1.1		/	١ ,		3) (ASTM A3 I) (AISI-316	′
	DN										20									
	PN		1	6		40 40					40				4	40				
	PRESSURE IN bar	16	13	13	13	40	35	32	28	24	40	35	32	28	24	21	40	34	32	29
OPERATING CONDITIONS	MAXIMUN TEMP. IN °C	120	200	250	300	120	200	250	300	350	120	200	25	50 300	350	400	120	200	300	400
CONDITIONS	MINIMUM TEMP. IN °C								-29				-	60						

LEV	EL (GAUGE	UPF	PER	LOV	VER
	DI	N	20	25	20	25
	Α			_	110	110
	L		165	165	165	165
	L ¹		180	180	180	180
	Р		155	155	155	155
	d		87	87	87	87
	0		_	_	12	12
533	D		105	115	105	115
DIN-2532/2533 DIN-28607 DIN-2544/2545	K		75	85	75	85
N-25			14	14	14	14
PN-16 DIN PN-40 DIN DIN	ь	PN-16	16	16	16	16
喜喜		PN-40	18	18	18	18
REDUCI	ED P	ITCH Ø	15	15	15	15
DRILLS	N°.		4	4	4	4
	CAS	TIRON	2,35	2,58	2,27	2,49
WEIGHT	NOD	ULAR IRON	2,35	2,58	2,28	2,50
IN Kgs.	CAS	T STEEL	2,55	2,80	2,50	2,75
	STAI	NLESS STEEL	2,55	2,80	2,50	2,75
	CAS	TIRON	53461	51061	53462	51062
CODE	NOD	ULAR IRON	83461	81061	83462	81062
2101-666.	CAS	T STEEL	83441	81041	83442	81042
	STAI	NLESS STEEL	83421	81021	83422	81022

N°. LEVEL	INDICATOR BOX	0	I	II	III	IV	V	VI	VII	VIII	IX	X
	h ¹	285	305	330	355	380	410	445	470	510	530	560
	V	75	95	120	145	170	200	230	260	300	320	350
	M	95	115	140	165	190	220	250	280	320	340	370
	F	115	135	160	185	210	240	275	300	340	360	390
	Н	518	538	563	588	613	643	678	703	743	763	793
WEIGHT	CARBON STEEL. PN-16	2,84	3,30	3,89	4,40	4,97	5,59	6,20	6,79	7,40	7,80	8,40
_	CARBON STEEL. PN-40	2,84	3,30	3,89	4,40	4,97	5,59	6,20	6,79	7,40	7,80	8,40
IN Kgs.	STAINLESS STEEL.	2,98	3,39	4,05	4,46	5,11	5,80	6,60	7,00	7,80	8,40	9,00
CODE	PN-40	53440	53441	53442	53443	53444	53445	53446	53447	53448	53449	5344
	CARBON STEEL. PN-16	83440	83441	83442	83443	83444	83445	83446	83447	83448	83449	8344
2101-166.	CARBON STEEL. PN-40	83420	83421	83422	83423	83424	83425	83426	83427	83428	83429	8342

Square-dowel level indicator

Level gauges Model 466 Level indicator box Model 166-EC

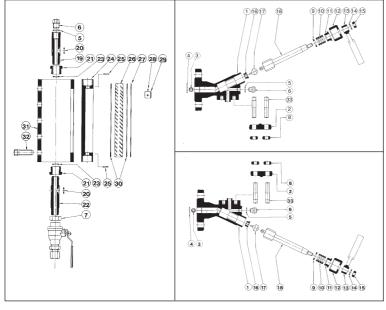
For use in boilers, receivers, cisterns, reservoirs, ...etc., to control the level of liquids, gases and steam.

A multiple-slot polyprismatic viewer allows the level to be optically read, clearly differentiating liquid and gas phases from liquid ones.

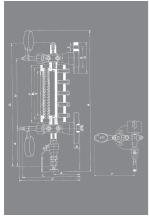
Specifications

- Level gauges with replaceable floating or mobile needle seal and safety ball. Should the viewer break a pressure imbalance is caused which moves the ball onto the seating preventing the fluid from flowing out.
- Gauge activation by means of a fast control lever.
- Indiscriminate gauge assembly with lever on the right or on the left.
- Seals are highly tightness, exceeding the requirements of the DIN-3230 norms. Page 3.
- Gauges and level indicator box with draining plugs allowing crystals and sediments to be thoroughly cleaned out by inserting a
 Ø 7 mm. rod.
- Box easily attached with flanges, facilitating maintenance without needing to take gauges apart even when operational. Has no glands avoiding irrecoverable losses of fluid in these areas. Can be positioned at 360°.
- Maximum, medium and minimum level optical mobile indicators.
- Boron silicate viewer with the special feature that if accidentally broken it is not shed out in pieces.
- Greater reading area than in the round-dowel system, at the same distance between flange centre.

IMPORTANT


We advise you to perfect the system with a cleaning valve, 3/8" Mod. 999 connected to the draining tube, in order to check the level indicator and its state of cleanliness periodically.

In steam boilers and other receivers with fluids that precipitate carry out at least one 2÷3 second cleaning session at 8 hour intervals.


Depending on demand:

- Possibility of manufacture in other types of material, for use in special working conditions (high temperatures, fluids, etc.).
- Special gaskets.
- Transparent viewers with mica plates, recommendable for temperatures exceeding 250° C.
- Boxes with special dowels for other distances between flange centres.
- Link boxes for viewing long levels.

N°. PIECE	PIECE									MA	ΓERIA	ιL								
			CAST	IRON			NOD	ULAR	IRON			С	AS ⁻	ST STI	EEL		;	STAINLES	SS STEE	L
1 2 3 4 5/23 6 7 8/15 9 10 11 12 13 14 16 17 18 19 20 21 22 24 25 26 27 28 29 30	Body Flange Safety ball Safety ring Coupling Screw Cap Nut Ring Seal Gland Gland nut Lever Washer Seating Seal Shaft Upper dowel Coupling Double screw Lower dowel Box Gudgeon Viewer Reglet Rivet Indicator arrow Coupling	Cast ste S. steel S. steel Aluminii Carbon Carbon S. steel Graphit Carbon Nodular Carbon Nodular Carbon S. steel S. steel Carbon Copper Carbon	steel (DIN steel (DIN steel (DIN steel (DIN steel (DIN I no ID N steel (DIN 1.44 (DIN	0619 GS- 001) (AISI- 001) (AISI- 001) (AISI- 01) (AISI- 01) (AISI- 01) (AISI- 01) (AISI- 01) (AISI- 028) (AISI- 028) (AISI- 031) (AISI- 04) (AISI- 05) (AISI- 06) (AISI- 07) (AISI-	C 25) 316) 302) k-22) k-45)	Cast s S. ste S. ste Alumi Carbo Carbo Carbo Carbo Nodul Carbo S. ste S. ste S. ste Carbo Carbo Carbo Carbo Carbo Carbo S. ste S. ste Carbo Alumi	steel (DI) el (DIN- e	N-1.061 1.4401) 1.4300) 2opper (DIN-1.1 (DIN-1.1 1.4401) (DIN-1.1 1.4028) 1.4028) (DIN-1.1 (DIN-1.1 (DIN-1.1 (DIN-1.1 (DIN-1.1 (DIN-1.1	040 GGC 9 GS-C; (AISI-31 (AISI-30 151 Ck-1 191 Ck-1 (AISI-31 191 Ck-1 040 GGC 141 Ck-1 (AISI-42 (AISI-42 191 Ck-1 191 Ck-2 191 Ck-1 191 Ck-1 191 Ck-1 191 Ck-1 191 Ck-1 191 Ck-1	25) (6) (2) (22) (45) (45) (45) (45) (3-40) (15) (0) (6) (0) (45) (45) (45) (45) (46) (6) (7) (6)	Cass S. si S	t steel (Dietel (Diete	(DIN IN-1. IN-1. / Coeel (Eeel (Eeel (EIN-1. IN-1. IN-	N-1.061 1.4401) opper DIN-1.1 1.4300) opper DIN-1.1 1.4401) DIN-1.1 DIN-1.1 1.4401) DIN-1.1 DIN-1.1 DIN-1.1 DIN-1.1 1.4028) DIN-1.1 DIN-1.1 DIN-1.1 DIN-1.1 DIN-1.1 DIN-1.1 DIN-1.1 DIN-1.1 DIN-1.1	9 GS-C. 9 GS-C. 9 GS-C. (AISI-31 (AISI-30 (AISI-31 151 Ck-141 Ck-(AISI-31 191 Ck-191 C	225) 66) 22) 222) 445) 155) 66) 445) 445) 445) 45) 90) 90) 91) 945) 945) 947) 947) 948) 948) 949) 949) 949) 949) 949) 949	S. steel S. steel S. steel PTFE (T. S. steel C. steel Boron-S. S. steel Boron-S. S. steel C. steel Aluminiu	DIN-1.440i DIN-1.440i DIN-1.440i DIN-1.440i effión) DIN-1.440i DIN-1.440i effión) DIN-1.440i effión) DIN-1.440i	B) (ASTM A 3) (ASTM A 3) (ASTM A 1) (AISI-316 1) (AISI-316	351 CF8M) () () () () () () () () () () () () (
31	Body	3 -	steel (DIN		T.52.3)				570 ST.	52.3)					570 ST.	52.3)	3		B) (ASTM A	351 CF8M)
32	Screw		steel (DIN						191 Ck-						191 Ck-				1) (AISI-316	
33	Stud	Carbon	steel (DIN	I-1.1181 C	k-35)	Carbo	n steel	(DIN-1.1	181 Ck-	35)	Carl	oon ste	el (E	DIN-1.1	181 Ck-	35)	S. steel	DIN-1.440	1) (AISI-316	i)
	DN					20 and 25														
	PN			6				40						40					10	
OPERATING	PRESSURE IN bar	16	13	13	13	40	35	32	28	24	40	35	32	_	_	21	40	34	32	29
CONDITIONS	MAXIMUM TEMP. IN °C	120	200	250	300	120	200	250	300	350	120	200	250		0 350	400	120	200	300	400
331131113110	MINIMUM TEMP. IN °C		-1	10				-20						-29				-1	60	

LEVE	EL 1	GAUGE	UPF	PER	LOWER			
	D	N	20	25	20	25		
	Α		_	_	127	127		
	L		165	165	165	165		
	Ľ	1	180	180	180	180		
	Р		185	185	185	185		
	d		83	83	83	83		
	0		_	_	12	12		
2533	D		105	115	105	115		
PN-16 DIN-2532/2533 PN-40 DIN-28607 DIN-2544/2545	K		75	85	75	85		
PN-16 DIN-2532/2 PN-40 DIN-28607 DIN-2544/2	I		14	14	14	14		
6 6	b	PN-16	16	16	16	16		
Ż Ż		PN-40	18	18	18	18		
REDUC	CEL	PITCH Ø	15	15	15	15		
DRILLS	S N	∘.	4	4	4	4		
	CAS	ST IRON	2,18	2,39	2,18	2,39		
WEIGHT	NOI	DULAR IRON	2,20	2,42	2,20	2,42		
IN Kgs.	CAS	ST STEEL	2,30	2,53	2,30	2,53		
	STA	INLESS STEEL	2,30	2,53	2,30	2,53		
	CAS	ST IRON	5346	5106	5346	5106		
CODE	NOI	DULAR IRON	8346	8106	8346	8106		
2101-466	CAS	ST STEEL	8344	8104	8344	8104		
	STA	INLESS STEEL	8342	8102	8342	8102		

N°. LEVEL I	NDICATOR BOX	0	I	II	III	IV	V	VI	VII	VIII	IX	X
	h ¹	160	180	205	230	255	285	320	345	385	405	435
	V	75	95	120	145	170	200	230	260	300	320	350
	M	95	115	140	165	190	220	250	280	320	340	370
	F	115	135	160	185	210	240	275	300	340	360	390
	G	337	357	382	407	432	462	497	522	562	582	612
	Н	413	433	458	483	508	538	573	598	638	658	688
WEIGHT	CARBON STEEL. PN-16	2,84	3,30	3,89	4,40	4,97	5,59	6,20	6,79	7,40	7,80	8,40
-	CARBON STEEL. PN-40	2,84	3,30	3,89	4,40	4,97	5,59	6,20	6,79	7,40	7,80	8,40
IN Kgs.	STAINLESS STEEL. PN-40	2,98	3,39	4,05	4,46	5,11	5,80	6,60	7,00	7,80	8,40	9,00
CODE	CARBON STEEL. PN-16	51840	51841	51842	51843	51844	51845	51846	51847	51848	51849	5184
	CARBON STEEL. PN-40	81840	81841	81842	81843	81844	81845	81846	81847	81848	81849	8184
2101-166.	STAINLESS STEEL. PN-40	81820	81821	81822	81823	81824	81825	81826	81827	81828	81829	8182

Reflection and transparency glasses

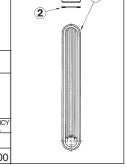
For level indicator box

Model 066

For visual checking of the level of liquids in all types of vessel, including those under pressure, in special thermal and chemical conditions. Also for checking processes.

The quality of the sight glass satisfies the most demanding safety standards and industry guarantees in general.

Specifications


- Boron silicate glass of high chemical stability.
- Of great purity and homogeneity.
- Low thermal expansion coefficient.
- Thermally prestressed which guarantees high mechanical resistance.
- High resistance to sharp changes of temperature, pressure and chemical aggression, guaranteeing a long life.
- Joint surfaces are perfectly flat.
- The prisms are pressed, not cut, with a precise angle of reflection.
- If the glass is accidentally broken it does not shatter.
- Satisfies the international standards: DIN-7080, DIN-7081, BS-3463, Ö Norm M7353,Ö Norm M7354,
 JIS B 8211, MIL G 18498, TGL 7210, ESSO/EXXON, Ö MV H 2009, SOD Spec. 123, etc.

IMPORTANT

Depending on demand:

— Other types of joints: Cardboard type klingerit acidit, PTFE (Teflón), etc.

N°. PIECE	PIECE	N	MATERIAL	
1 2 3	Glass Joint Joint	Boron-Silica Red klingeri Oilit klingeri	t cardboard	
OPERATING	FLUID	WITH OUTSTANDING ATTACK	WITHOUT OUTSTANDING ATTACK	TRANSPARENCY WITH MICA
CONDITIONS(2)	PRESSURE IN bar	35	100	70
CONDITIONS(2)	MAXIMUM TEMPERATURE IN °C	243	120	280 ÷ 300

⁽¹⁾ For level indicator box in steam, joint ② must be exposed to the medium. For level indicator box in processes, joint ③ must be exposed to the medium. (2) Type H 340 bar at 120°C, 42 bar at 253°C.

	TVDE	N°. OF	NIO	HxLxb	С		TOLER	ANCES		PARALLELISM	h1		В	WEIGHT	CODE	ا ا
	TYPE	PRISMS	N°.	HXLXD					С	TOLERANCES ≤	h¹			IN Kgs.	CODE	
			0	95x30x17	15						79			0.08	2101-066.1005*	B C L
				115x30x17						0,05	99			0,11	2101-066.1015	
				140x30x17							124			0,14	2101-066.1025	
				165x30x17							149			0,14	2101-066.1035	
						+0		.05	. 0 0							
			IV	190x30x17	15		+0,2	+0,5	+0,2	0,08	174			0,20	2101-066.1045	드
	A			220x30x17		-1,5	-0,8	-0,5	-0,8		204	30	1,5	0,23	2101-066.1055	
				250x30x17	15						234			0,27	2101-066.1065	
			VII	280x30x17	15						264			0,31	2101-066.1075	
			VIII	320x30x17						0,13	304			0,36	2101-066.1085	
			IX	340x30x17	15						324			0,38	2101-066.1095	· L
				370x30x17							354			0,40	2101-066.1105*	
			0	95x34x17	17						75			0,10	2101-066.2005*	
				115x34x17	17					0,05	95			0,12	2101-066.2015	* Material without stock.
				140x34x17	17						120			0,12	2101-066.2025	
z				165x34x17	17						145			0,10	2101-066.2035	
은			IV	190x34x17	17									0,19	2101-066.2045	
C .			l V							0,08	170			0,22		
REFLECTION				220x34x17	17	+0	+0,2	+0,5	+0,2		200				2101-066.2055	
뿞			VI	250x34x17	17	-1,5	-0,8	-0,5	-0,8		230			0,30	2101-066.2065	
			VII	280x34x17	17						260	35	1,5	0,35	2101-066.2075	
			VIII	320x34x17	17					0,13	300			0,41	2101-066.2085	
			IX	340x34x17	17						320			0,43	2101-066.2095	
			Х	370x34x17	17						350			0,45	2101-066.2105*	
			0	95x34x22	17						75			0,15	2101-066.3005*	
				115x34x22	17					2.25	95			0,17	2101-066.3015	
				140x34x22	17					0,05	120			0,22	2101-066.3025	CLASS-1 CLASS-1 CLASS-1 CLASS-2
				165x40x22	17						145			0,25	2101-066.3035	CLASS-1 CLASS-1 CLASS-1
			IV	190x34x22	17						170			0,28	2101-066.3045	9 8 8 8
	н		V	220x34x22	17	+0	+0,2	+0,5	+0,2	0,08	200	35	1,5	0,20	2101-066.3055	
			VI	250x34x22	17	-1,5	-0,8	-0.5	-0,8		230			0,39	2101-066.3065	
			VII	280x34x22	17		-0,6	-0,5	-0,6		260			0,39	2101-066.3075	
			VIII	320x34x22	17					0.10						
										0,13	300			0,53	2101-066.3085	
			IX	340x34x22	17						320			0,55	2101-066.3095	
			Х	370x34x22	17						350			0,57	2101-066.3105*	ISO-719 ISO-720
				95x30x17							79			0,09	2101-066.10051*	1-6-6-1
				115x30x17						0,05	99			0,12	2101-066.10151*	
				140x30x17							124			0,15	2101-066.10251*	
				165x30x17							149			0,18	2101-066.10351*	
				190x30x17			+0,2	+0,5		0,08	174			0,21	2101-066.10451*	
				220x30x17		-1,5	-0,8	-0,5		0,00	204			0,24	2101-066.10551	
			VI	250x30x17							234	30	1,5	0,28	2101-066.10651	
			VII	280x30x17							264			0,32	2101-066.10751	11 17 17 17 1
			VIII	320x30x17						0,13	304			0,37	2101-066.10851	33.7
			IX	340x30x17						0,10	324			0,39	2101-066.10951	2 2 2 2
			X	370x30x17							354			0,41	2101-066.11051*	DIN-12111 DIN-28817 DIN-12116 DIN-52322
																DIN-12111 DIN-28817 DIN-12116 DIN-52322
			0	95x34x17							75			0,11	2101-066.20051*	
≿			'	115x34x17						0,05	95			0,13	2101-066.20151*	
ENCY			l II	140x34x17							120			0,17	2101-066.20251*	
쁄			III	165x34x17							145			0,20	2101-066.20351*	
TRANSPARE			IV	190x34x17						0,08	170			0,23	2101-066.20451*	၈ ဝ
N N			V	220x34x17			+0,2	+0,5		0,00	200		1,5	0,27	2101-066.20551	0,019 0,030 0,2 89
준			VI	250x34x17		-1,5	-0,8	-0,5			230			0,31	2101-066.20651	0 0 0 8
			VII	280x34x17							260			0,36	2101-066.20751	
			VIII	320x34x17						0.12	300			0,42	2101-066.20851	
			IX	340x34x17						0,13	320			0,44	2101-066.20951	
			Х	370x34x17							350			0,46	2101-066.21051*	
			0	95x34x22							75			0,16	2101-066.30051*	S O
			1	115x34x22							95			0,18	2101-066.30051	Chemical properties Hydrolytic resistance Acid resistance Alkaline resistance
										0,05						je je
				140x34x22							120			0,23	2101-066.30251*	Chemical properti Hydrolytic resistand Acid resistance Alkaline resistance
			III	165x34x22							145			0,26	2101-066.30351*	Chemical prop Hydrolytic resist Acid resistance Alkaline resista
			IV	190x34x22						0,08	170		1.5	0,29	2101-066.30451*	ita es
	H		V	220x34x22		+0	+0,2	+0,5			200	35	1,5	0,35	2101-066.30551	Sis
			VI	250x34x22		-1,5	-0,8	-0,5			230			0,40	2101-066.30651	l j e j
			VII	280x34x22							260			0,47	2101-066.30751	ਰੂੰ ਰੂੰ ਫ
			VIII	320x34x22						0,13	300			0,54	2101-066.30851	长 호 호美
			IX	340x34x22							320			0,56	2101-066.30951	10 1 d d l
			Х	370x34x22							350			0,58	2101-066.31051*	

Transformation temperature according to DIN-52324.......575°C
Temperature of the glass at viscosities dPas (Poise):10¹³........553°C 10^{7,6}.....775ºC Density.....2,39 g/cm³

Type of glass......Ggl 490 Average coefficient of linear expansion α20°C/300°C.....<5.10-6 K-1

10⁴.....1.225ºC

Informative brochure, without obligation and subject to our General Sales Conditions.

Elasticity modulus	73,54 N/mm ⁻²
Poisson index	0,19 μ
Specific thermal tension $\varphi = \frac{E \cdot \infty}{}$	0,405 Nmm ⁻² K ⁻¹
Specific thermal tension $ \phi = \frac{E^{-\infty}}{1 - \mu} $ Thermal conductivity λ	1.168 • W
•	, and mark
Refraction index $nd \lambda = 587,6 \text{ mm}$	1,494
Photoplasticity constant K	2 Q . 10-6 mm ² /N

Physical properties

Mica shield

Model 066-PM

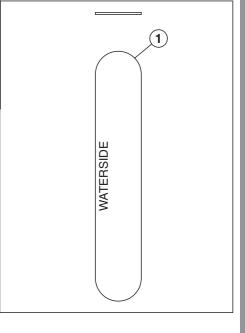
For level indicators

In combination with transparent glasses the life of these is increased when working at high pressures and temperatures. Also, they are protected from erosion, which results from the effects of the corrosive chemical components, alkaline solutions, boiler water, steam, caustic products, hydrofluoric acids, hot and concentrated phosphoric acids, sodium and potassium hydroxides and other contaminating, viscous or corrosive media.

Applicable in level indicators for electrical generation plants, thermal power plants, petroleum refineries, petrochemical plants, pressure vessels, fertilizers, sugar refining plants, paper mills,... etc..

Specifications

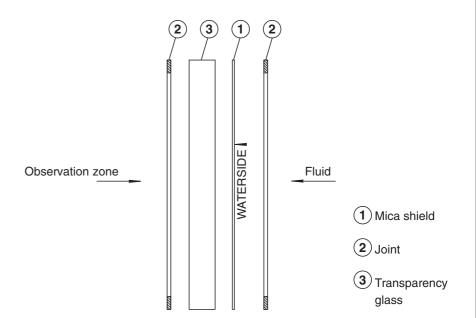
- Manufactured from laminas of natural muscovite mica.
- High heat resistance.
- Colourless with good transparency and optical quality, even in the presence of temperature fluctuations and with aggressive fluids.
- Smooth, flexible and unbreakable surface, guaranteeing an absolutely sealed joint.
- Resistant to shocks, stress and vibrations.
- Protects the environment in case of glass breakage.
- Complies with international standards: ASTM D351-57T and IS 1175-57.
- Each lamina is rigorously tested and inspected.


Nº PIECE		PIECE	MATERIAL		
1		Mica shield	Natural muscovite mica		
OPERATING CONDITIONS		PRESSURE IN bar	392		
		MAX. TEMPERATURE IN °C	600		

(1) We recommend mica laminas to be used above 24 bar or 196°C.

IMPORTANT

Depending on demand:


- Other thicknesses.
- Any shape or size.

TYPE	Nº:	HxLxb	CODE	
		115 x 30 x 0,2	2101-066.10152	
	II	140 x 30 x 0,2	2101-066.10252	
	III	165 x 30 x 0,2	2101-066.10352	
	IV	190 x 30 x 0,2	2101-066.10452	
Α	V	220 x 30 x 0,2	2101-066.10552	
	VI	250 x 30 x 0,2	2101-066.10652	
	VII	280 x 30 x 0,2	2101-066.10752	
	VIII	320 x 30 x 0,2	2101-066.10852	
	IX	340 x 30 x 0,2	2101-066.10952	
	Х	370 x 30 x 0,2	2101-066.11052	_
	1	115 x 34 x 0,2	2101-066.20152	- - 포
	II	140 x 34 x 0,2	2101-066.20252	
	III	165 x 34 x 0,2	2101-066.20352	
	IV	190 x 34 x 0,2	2101-066.20452	ا ا
В/Н	V	220 x 34 x 0,2	2101-066.20552	
	VI	250 x 34 x 0,2	2101-066.20652	
	VII	280 x 34 x 0,2	2101-066.20752	
	VIII	320 x 34 x 0,2	2101-066.20852	
	IX	340 x 34 x 0,2	2101-066.20952	
	X	370 x 34 x 0,2	2101-066.21052	

Installation

It is of vital importance that the mica shield is mounted such that the side market with the work "Waterside" is in contact with the liquid. The other side must be applied directly to the glass.

Maintenance

The life of a transparency glass depends to a large extent on the mica shield used. Once the lamina is worn out the installation should be changed, including the glass.

The average life cycle of the mica shield varies widely end depends upon the liquid, pressure and temperature.

